
Usability and Cognitive Models of

Program Comprehension

Michael Hansen

Goldstone Lab Meeting

April 18th, 2012

2

ñMany claims are made for the

efficacy and utility of new approaches

to software engineering ï structured

methodologies, new programming

paradigms, new tools, and so on.

Evidence to support such claims is

thin and such evidence, as there is, is

largely anecdotal. Of proper scientific

evidence there is remarkably little.ò

- Frank Bott, 2001

Usability Claims

Å ñMethods where NbLinesOfCode is higher than 20 are hard to understand and

maintain. Methods where NbLinesOfCode is higher than 40 are extremely complex

and should be split in smaller methods (except if they are automatically generated).ò

ï NDepend Code Metrics documentation (2012)

Å ñOur experience writing programs in Ur/Web suggests that the feature set we have

chosen is more than sufficient for our application domain.ò

ï Ur/Web meta-programming language overview (2010)

Å ñWe found that in practice it was quite difficult to achieve consistency of usage-site

type annotations, so that type errors were not uncommon.ò

ï Scala overview (2006)

Å ñéit provides a natural and simple medium for the expression of a large class of

algorithms.ò

ï ACM-GAMM report on FORTRAN (1958)

3

Principles to Follow?

1. the code should be partitioned into functions;

2. every function should be most 20 lines of code;

3. functions should not depend on the global state

but only on the arguments;

4. every function is either general or application

specific, where general function is useful to other

applications;

5. every function that could be made general ï

should be made general;

6. the interface to every function should be

documented;

7. the global state should be documented by

describing both semantics of individual variables

and the global invariants.

4

1. For each component and use case

combination, write code that uses the

component to implement the use case. If

the component cannot be adapted to the

use case, then write the simplest possible

implementation of the use case without the

component.

2. For each component, count the tokens

required to:

Å implement the component; and

Å adapt it to each use case.

3. The MDL principle, as adapted for

components, suggests that the component

minimizing the count of (2) possesses the

órightô level of generality.

Veldhuizen, 2007 Stepanov, 2007

Usability Tradeoffs (Blackwell, 2001) ï Cog. Dimensions of Notation

Å Abstraction level ï minimum and maximum levels of abstraction exposed by the API

Å Working framework ï size of the conceptual chunk needed to work effectively.

Å Work-step unit ï how much of a programming task can be completed in a single step

Å Progressive evaluation ï what extent partially completed code can be executed

Å Premature commitment ï amount of decisions developers have to make in advance

Å Penetrability ï how the API facilitates exploration and understanding of its components

Å Elaboration ï extent to which the API must be adapted

Å Viscosity ï barriers to change inherent in the API (effort needed to make a change)

Å Consistency ï how much of the rest of an API can be inferred once part of it is learned

Å Role expressiveness - how apparent relationships are between components & program

Å Domain correspondence - how clearly API components map to the domain

5

- Adapted by Clarke, 2004

Which Syntax is Better (Round 1)?

var names = select p.Name

 from p in people

var names = from p in people

 select p.Name

6

Which Syntax is Better (Round 1)?

var names = select p.Name

 from p in people

var names = from p in people

 select p.|

7

Which Syntax is Better (Round 2)?

8

for x in [10, 20, 30]:

 for y in [1, 2, 3]:

 print x+y

11

12

13

21

22

23

31

32

33

for x in [10, 20, 30]:

 print x

10

20

30

Which Syntax is Better (Round 2)?

9

for x in [10, 20, 30]; y in [1, 2]:

 print x+y

?

Which Syntax is Better (Round 2)?

10

for x in [10, 20, 30]; y in [1, 2]:

 print x+y

11 11 error!

12 22

21

22

31

32

1st 2nd 3rd Why?

11

ñFurthermore, such [scientific evidence] as

there is can be described as óblack boxô, that

is, demonstrates a correlation between the

use of a certain technique and an

improvement in some aspect of the

development.

It does not demonstrate how the technique

achieves the observed effect.ò

- Frank Bott, 2001

History of the Psychology of Programming

Å First Period (1960-1979)

ï Imported theories and methods from Psychology

Å Short-term memory, statistics

ï Correlations between task and language/human factors

Å Comments, defects detected

Å Second Period (1980-present)

ï Cognitive models

Å Knowledge, strategies, task, environment/tools

ï Response times, eye movements, intermediary code

ï Experts and students

12

Memory Model of the First Period (1960ôs ï 1970ôs)

13

Complexity Metrics & Millerôs Magic Number

Å Lines of code

ï Coupled with everything!

Å Cyclomatic Complexity

ï # of branches

Å Halstead Effort

ï Operators, operands

Å Object-Oriented metrics

ï Coupling, cohesion, inheritance

14

History of the Psychology of Programming

Å First Period (1960-1979)

ï Imported theories and methods from Psychology

Å Short-term memory, statistics

ï Correlations between task and language/human factors

Å Comments, defects detected

Å Second Period (1980-present)

ï Cognitive models

Å Knowledge, strategies, task, environment/tools

ï Response times, eye movements, intermediary code

ï Experts and students

15

16

Memory Model of the Second Period (1980ôs ï present)

17

From Chase & Simon (1973) to Soloway & Ehrlich (1984)

18

What Goes Here (Part 1) ? (Soloway & Erlich , 1984)

19

What Goes Here (Part 1) ? (Soloway & Erlich , 1984)

20

What Goes Here (Part 2) ? (Soloway & Erlich , 1984)

21

What Goes Here (Part 2) ? (Soloway & Erlich , 1984)

22

23

The Integrated Meta-Model

(Von Mayrhauser, 1995)

More Modern Working Memory Model

24

25

The Stores Model of Code Cognition (Douce, 2008)

Quantifying Usability Tradeoffs

Å Problems

ï Models are getting more complex

ï Verbal-conceptual theories

Å Precise Predictions

ï Can eliminate bad designs with user studies, buté

ï Want to predict trade-offs in advance

ï Choose between ñgoodò designs

Å TODOs

ï Quantify cognitive model(s)

ï Simulate model(s) with different designs

ï Interpret simulation output as trade-offs

26

The Cognitive Complexity Metric (Cant, 1995)

27

The Cognitive Complexity Metric (Cant, 1995)

28

Chunk Complexity (R) ï 1/3

29

