Comparing Software Abstractions Baby Steps

Michael Hansen

Lab Lunch Talk 2011

Comparing Abstractions

- Need objective comparison method
 - Libraries (OpenGL vs. Direct3D)
 - Language constructs (λ -expressions, concepts in C++)
- Motivation
 - Inform evolution of libraries, languages
 - Widen audience
 - Education

Proposal

- Relative to complexity metrics
- Abstractions should decrease "complexity"
- Which metrics?
- Whose complexity?

$$A_P = \sum_{|\cdot|\in C} w_{|\cdot|} (|P| - |P'|)$$

Yet Another Problem

- Need reasonable complexity metrics
 - Weyuker's Properties
- Some classics
 - Statement Count
 - McCabe Cyclomatic Number
 - Halstead Effort Measure
 - Oviedo Data Flow

- A few newbies
 - "Cognitive Complexity"
 - Kolmogorov Complexity
 - Veldhuizen metrics
 - Chunking

Weyuker's Properties (1/3)

- P, Q, R: program bodies
 - All free variables assigned default values
- P; Q: P and Q concatenated
- |P|: complexity of P, c(P)
- *P* ≡ *Q*: *P* and *Q* are functionally equivalent
 - Halt on same inputs, produce same output

Weyuker's Properties (2/3)

1. $(\exists P, Q)(|P| \neq |Q|)$

2.
$$(\forall c)(\{P \mid |P| = c\} \text{ is finite})$$

3.
$$(\exists P, Q)(|P| = |Q| \text{ and } P \neq Q)$$

4.
$$(\exists P, Q)(P \equiv Q \text{ and } |P| \neq |Q|)$$

Not all same complexity

Finite # of programs of a given complexity

Not all different complexities

Functional equivalence != complexity equivalence

Weyuker's Properties (3/3)

- 5. $(\forall P,Q)(|P| \leq |P;Q| \text{ and } |Q| \leq |P;Q|)$; does not decrease $|\cdot|$
- 6. $(\exists P, Q, R)(|P| = |Q| \text{ and } |P; R| \neq |Q; R|)$ Context matters
- 7. $(\exists P)(|P| \neq |\text{permute}(P)|)$

Order matters

8. $(\forall P)(|P| = |\operatorname{rename}(P)|)$

Identifier names do not matter

9. $(\exists P, Q)(|P| + |Q| < |P; Q|)$

Gestalt programs

Statement Count

• Need definition of "statement"

- Physical source code line?
- Logical source code line?
- Easy to compute!
- Correlated with defects, other metrics
 - Executable lines of code
 - 15-20 bugs per KLOC?

Statement Count

- Property 6 context matters
 - Fixed for a given block
- Property 7 order matters
 - Line order is irrelevant
- Property 9 whole may be greater than sum of parts
 - Consequence of 6

Cyclomatic Complexity (McCabe, 1976)

- Count of linearly-independent paths
- Edges Nodes + 2 * Connected Components
 - 9 8 + 2 * 1 = 3
- Split modules if CC > 10
- Branch Coverage ≤ CC ≤ Paths
 - Upper-bound on test case branch coverage
 - Lower-bound on paths through control flow graph

Cyclomatic Complexity

- Property 2 only finite # of programs have a given comp.
 - Only decision structure matters
- Property 6 context matters
- Property 7 order matters
- Property 9 whole may be greater than sum of parts

Effort Measure (Halstead, 1977)

- $n_1 = distinct operators, n_2 = distinct operands$
- $N_1 = all operators, N_2 = all operands$
- Measures
 - Program length: $N = N_1 + N_2$
 - Program vocabulary: $n = n_1 + n_2$
 - Volume: $V = N * \log_2(n)$
 - Difficulty: $D = (n_1 * N_2) / (2 * n_2)$
 - Effort = D * V

Effort Measures

- Property 5 concatenation cannot decrease comp.
 - Overlap in operators
- Property 7 order matters
 - Only counting operators, operands

Data Flow Complexity (Oviedo, 1980)

- Program is broken into blocks
 - Statements executed as a unit
- Path from block A to block B
 - Control flow from A to B (i.e. GOTO)
- Variable reaching block B
 - Defined in previous block
 - Not redefined in path (including B)

 $\|V_i\|$ $DF_i = \sum \text{definitions}(v_i)$ i=1

 $\|S\|$ $DF = \mathbf{N}$ i=1

Data Flow Complexity

- Property 2 only finite # of programs have a given comp.
 - Block size is irrelevant
- Property 5 concatenation cannot decrease comp.
 - Only interblock data flow is considered

Kolmogorov Complexity

• Easy to define, hard to compute

$$|P| = (\min_{l} | l = \operatorname{length}(Q) \land P \equiv Q)$$

- Property 1 not all the same complexity
- Property 2 only finite # of programs have a given comp.
- Property 3 not all different complexities
- Property 4 functional equiv. != complexity equiv.

Kolmogorov Complexity

- Property 5 concatenation cannot decrease comp.
 - Repeated blocks are compressed
- Property 6 context matters
 - Non-functional code may be used
- Property 7 order matters
 - Different function
- Property 9 whole may be greater than sum of parts
 - Concatenation can only decrease complexity

Cognitive Complexity (OO)

- Based on "Cognitive Informatics"!
- Each class method assigned weight
 - Sequence = 1, branch = 2, iteration = 3, call = 2
- Class weights
 - Added for same level
 - Multiplied for different levels (parent, child)
- Correlated with class coupling

Cognitive Complexity (OO)

- Property 6 context matters
 - Weights are fixed for a class
- Property 7 order matters
 - Method order is irrelevant
 - What about inside methods?

Metrics and Weyuker's Properties

	Lines	Cyclomatic	Effort	Data Flow	Kolmogorov	Cognitive
1						
2						
3						
4						
5						
6						
7						
8						
9						

Veldhuizen Metrics

- Token count (Minimum Description Length)
 - Related to Kolmogorov Complexity
 - Best = min x | x = model tokens + instance tokens
- Inversion difficulty
 - Locate suitable abstraction, parameters
 - Substitution unification
 - Common inversions are low computational complexity

Chunking (Cant et al 1995)

- Short-term memory
 - 7 ± 2 "chunks"
 - Capacity expanded by chunking
 - Distraction = forgetting after 20-30 sec.
- Long-term memory
 - Virtually unlimited capacity
 - Structure, low noise enhance recall
 - Chunking and LTM structure are related

Chunking

• Variable plan

- Variables have roles (iterators, user input, etc.)
- Names are crucial, even for experts
- Control flow plan
 - Common control flow structures
 - Syntactic representation important
 - "while" instead of "if"

Tracing

• Program is broken into N "chunks"

- Decision or loop structure
- $C_1 = \text{complexity of } i-\text{th chunk}$
- R_i = difficulty of understanding
- T_i = difficulty of tracing dependencies

Famil. (Size + Ctrl Struct. + Bool Expr. + Recog. + Visual Struct. + Disrupt.)

$C_{i} = R_{i} + \sum_{j \in N} C_{j} + \sum_{j \in N} T_{j}$ $T_{F}(T_{L} + T_{A} + T_{S} + T_{C})$ $T_{F}(T_{L} + T_{A} + T_{S} + T_{C})$

Famil. (Localization + Ambiguity + Spacial Dist. + Cueing)

Reservations

- Metrics
 - Purely syntactic, uncomputable, vague/subjective
 - Actual cognitive models?
 - All code is rarely available or needed
- Properties
 - Renaming (property 8) obfuscation
 - Concatenation really?
 - Independent of programmer

Future Directions

- Metrics relative to
 - Domain/Perspective
 - Tolerance, user, developer
 - Programmer
 - Tools matter less than skill, "rules of discourse"
 - Task
 - Reading, editing, debugging
- Cognitive Dimensions of Notation Framework

