
Comparing Software Abstractions
Baby Steps

Michael Hansen

Lab Lunch Talk 2011

Comparing Abstractions

Need objective comparison method

Libraries (OpenGL vs. Direct3D)

Language constructs (-expressions, concepts in C++)

Motivation

Inform evolution of libraries, languages

Widen audience

Education

Proposal

Relative to complexity metrics

Which metrics?

Whose complexity?

Yet Another Problem

Need reasonable complexity metrics

Properties

Some classics

Statement Count

McCabe Cyclomatic Number

Halstead Effort Measure

Oviedo Data Flow

A few newbies

Kolmogorov Complexity

Veldhuizen metrics

Chunking

Properties (1/3)

P, Q, R: program bodies

All free variables assigned default values

P; Q: P and Q concatenated

|P|: complexity of P, c(P)

Halt on same inputs, produce same output

Properties (2/3)

Not all same complexity

Finite # of programs of a

given complexity

Not all different

complexities

Functional equivalence !=

complexity equivalence

Properties (3/3)

Context matters

Order matters

; does not decrease |·|

Identifier names do not matter

Gestalt programs

Statement Count

Physical source code line?

Logical source code line?

Easy to compute!

Correlated with defects, other metrics

Executable lines of code

15-20 bugs per KLOC?

Statement Count

Property 6 context matters

Fixed for a given block

Property 7 order matters

Line order is irrelevant

Property 9 whole may be greater than sum of parts

Consequence of 6

Cyclomatic Complexity (McCabe, 1976)

Count of linearly-independent paths

Edges Nodes + 2 * Connected Components

9 8 + 2 * 1 = 3

Split modules if CC > 10

Upper-bound on test case branch coverage

Lower-bound on paths through control flow graph

Cyclomatic Complexity

Property 2 only finite # of programs have a given comp.

Only decision structure matters

Property 6 context matters

Property 7 order matters

Property 9 whole may be greater than sum of parts

Effort Measure (Halstead, 1977)

n1 = distinct operators, n2 = distinct operands

N1 = all operators, N2 = all operands

Measures

Program length: N = N1 + N2

Program vocabulary: n = n1 + n2

Volume: V = N * log2(n)

Difficulty: D = (n1 * N2) / (2 * n2)

Effort = D * V

Effort Measures

Property 5 concatenation cannot decrease comp.

Overlap in operators

Property 7 order matters

Only counting operators, operands

Data Flow Complexity (Oviedo, 1980)

Program is broken into blocks

Statements executed as a unit

Path from block A to block B

Control flow from A to B (i.e. GOTO)

Variable reaching block B

Defined in previous block

Not redefined in path (including B)

Data Flow Complexity

Property 2 only finite # of programs have a given comp.

Block size is irrelevant

Property 5 concatenation cannot decrease comp.

Only interblock data flow is considered

Kolmogorov Complexity

Easy to define, hard to compute

Property 1 not all the same complexity

Property 2 only finite # of programs have a given comp.

Property 3 not all different complexities

Property 4 functional equiv. != complexity equiv.

Kolmogorov Complexity

Property 5 concatenation cannot decrease comp.

Repeated blocks are compressed

Property 6 context matters

Non-functional code may be used

Property 7 order matters

Different function

Property 9 whole may be greater than sum of parts

Concatenation can only decrease complexity

Cognitive Complexity (OO)

Each class method assigned weight

Sequence = 1, branch = 2, iteration = 3, call = 2

Class weights

Added for same level

Multiplied for different levels (parent, child)

Correlated with class coupling

Cognitive Complexity (OO)

Property 6 context matters

Weights are fixed for a class

Property 7 order matters

Method order is irrelevant

What about inside methods?

Metrics and Properties
Lines Cyclomatic Effort Data Flow Kolmogorov Cognitive

1

2

3

4

5

6

7

8

9

Veldhuizen Metrics

Token count (Minimum Description Length)

Related to Kolmogorov Complexity

Best = min x | x = model tokens + instance tokens

Inversion difficulty

Locate suitable abstraction, parameters

Substitution unification

Common inversions are low computational complexity

Chunking (Cant et al 1995)

Short-term memory

7 ±

Capacity expanded by chunking

Distraction = forgetting after 20-30 sec.

Long-term memory

Virtually unlimited capacity

Structure, low noise enhance recall

Chunking and LTM structure are related

Chunking

Variable plan

Variables have roles (iterators, user input, etc.)

Names are crucial, even for experts

Control flow plan

Common control flow structures

Syntactic representation important

Chunking

Decision or loop structure

Ci = complexity of i-th chunk

Ri = difficulty of understanding

Ti = difficulty of tracing dependencies

Chunking

Chunking

Reservations

Metrics

Purely syntactic, uncomputable, vague/subjective

Actual cognitive models?

All code is rarely available or needed

Properties

Renaming (property 8) obfuscation

Concatenation really?

Independent of programmer

Future Directions

Metrics relative to

Domain/Perspective

Tolerance, user, developer

Programmer

Task

Reading, editing, debugging

Cognitive Dimensions of Notation Framework

Questions?

