
Programming Languages,

Cognitive Science, and

Computational Thinking

Michael Hansen

Lab Lunch Talk, Fall 2011

A Quote and a Question

“Millions [spent on researching] compilers, but hardly a

penny for understanding human programming language

use.” – Newell and Card, 1985

• What role should Cognitive Science play in…

• Language (library) design and evolution?

• Computer Science Education?

Language Design (1/2)

“Programming is the process of translating a mental

plan into one that is compatible with the computer.”

– Hoc & Nguyen-Xuan, 1990

• Language design guided by

• Technical objectives (scalability, mathematical elegance)

• Problems with previous languages

• Feedback from technical community

Language Design (2/2)

• Who is the target audience?

• 23:1 individual differences (Curtis, 1984)

• Experts internalize “programming plans” and “rules of

discourse” (Solloway, 1984)

• Debugging models

• Assume experts and novices use same process, but…

• Novices introduce errors by correcting immediate behavior

• Most successful language ever?

• VBA in Excel

HCI Dimensions

• Visibility

• Memory overload

• Closeness of Mapping

• High-level operators match domain

• Low-level primitives used otherwise

• Speak the User’s Language

• If unfamiliar, superficial knowledge transfer

• Natural language, mathematics

Problem: Take a look at the following definition:

bool operator<(const T& x, const T& y)
{
 return true;
}

Explain why this is wrong for any class T.

- Stepanov, 2007

Case Study (1/3)

• PacMan game design (Pane, 2006)

• Children and adults

Do this: Write a statement that summarizes how I

(as the computer) should move Pacman in relation

to the presence or absence of other things.

Case Study (2/3)

• Event or rule based

• When PacMan hits a wall, make him stop

• Aggregate operators

• Turn all ghosts blue, move all scores down

• Natural language arithmetic

• Add 100 to score (not score += 100)

• State is remembered

• Motion not modeled as continuous update

• List data structures

• Complex structures arise from queries

Case Study (3/3)

• Boolean expressions avoided

• Mutually exclusive rules or general case + exceptions

• Operator precedence context-dependent

• select the objects that match (not red) and square

• select the objects that match (not triangle and green)

• Previous findings (Miller, 1974; 1981)

• Looping structures do not match intuition (aggregate vs. iteration)

• AND, OR, NOT do not match natural lang. sematics

• if-then confusion

• We see if X then Y; Z

• They read if X Y then Z

Sounds About Right?

HCI Dimensions

• Visibility

• Closeness of Mapping

• Speak the User’s

Language

Theory and Practice (1/2)

• Usability studies, little appeal to Cognitive Science

• Lacking engineering-style theory of HCI

• “Hard sciences drive out soft” – Newell and Card

• Computer Science drives out HCI

• Don’t need to know much about user

• Need to start somewhere

• Approximate, quantitative models of user interaction

• Model Human Processor, GOMS, Keystroke-Level

Time Scales

• Natural Law

• < 30 ms

• Psychology

• 30 ms to 30 sec

• Bounded Rationality

• > 1 min

Theory and Practice (2/2)

• “Tradeoffs, such as between the effort to learn a

complex interface and the power of having it, could

be understood enough to affect the types of

interfaces explored.”

• Fitt’s Law

• Speed/accuracy trade-off

• Not a cognitive model…

Time to

complete

Device

constants

Distance

to target

center

Width of

target

Criticisms

• Too low level

• Time scale below Psychology (perceptual)

• Too limited in scope

• Good cognitive models can be generalized, but…

• Too late

• Research becomes obsolete

• Too difficult to apply

• Keep trying, build on approximate models

Perceptual to Conceptual

• Programming is difficult for beginners

• “…[students] find it difficult to identify what is important in

a problem and produce convoluted solutions that replicate

the problem complexities.” (Kramer, 2007)

• Abstraction is key

• Leaving out irrelevant aspects of problem

• Generalization

• Extraction of common features from specific examples

Computational Thinking (CT)

• Programming : Computer Science (Lu, 2009)

• Proof construction : Mathematics

• Literary analysis : English

• 1st exposure to CT is programming

• Should be entrance requirement

• Core CT concepts?

• Search space, initial & final states, operations, heuristics,

efficiency, concurrency, recursion, non-determinism

Perceptual and Conceptual

• Have experts just embodied CT concepts?

• Perceptual efficiency, cues (Goldstone)

• What % of programming is skill-based?

• How to model perceptual-conceptual level?

• Memory limits, primacy/recency, chunking

• Categorization, learning (Minerva, Beagle)

• Goals, plans, task-dependency (Soloway; Cant, 1995)

• Not too general…

Open Questions and Directions

• Which CT concepts are essential?

• Task-dependent, but perhaps general

• How to expose CT concepts in a language?

• Evaluating language features

• Need quantitative models to understand trade-offs

• Perceptual-conceptual

• Experts vs. novices

• Do we need separate languages?

Questions?

