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Topics 

 Part 1 

 Probability from a Bayesian Perspective 

 Differences with NHST 

 Theory of Bayesian Statistics 

 Part 2 

 Gibbs sampling, MCMC 

 Examples – R and BUGS 



Part 1 - The Theory 



Probability 

 Measure of uncertainty 

 Subjective beliefs or long-run relative frequencies? 

 Math is the same – probability distributions over sample space 

 Bayesian analysis transforms beliefs 

Beliefs (before) 

Data 

Beliefs (after) 



Null Hypothesis Significance Testing 

 Goal of inference: determine significance of a parameter 

value 

 Calculate p value, reject if p < 0.05 (5% chance of false alarm) 

 Problem – p value calculation depends on experimenter intentions 

 Was sample size set by design or by chance? 

 Edge cases exist where this can change significance 

 Confidence Intervals 

 Range where a parameter would be significant 

 Still depends on p value, so… 

 No information about degree of uncertainty in a parameter value 

 Prior knowledge 

 Difficult or impossible to use in standard tests 



Advantages of Bayesian Analysis 

 Prior knowledge is naturally represented 

 Prior must be acceptable to a skeptical scientific audience 

 Easy to swap out priors and re-run the analysis 

 Uncertainty is front-and-center 

 Parameters have degrees of certainty rather than significant or not 

significant 

 Judgment is left to the user (decision theory, HDI, ROPE) 

 Model comparison is simple 

 Highly complex models are naturally penalized (diffuse posterior) 

 No corrections needed for multiple comparisons 

 Multi-dimensional posterior can be freely sliced 



Deriving Bayes’ Rule (1/2) 

 A blood test for a disease 

has a 1% false alarm rate 

 Typically, 1 in 100,000 have 

the disease 

 You receive a positive test 

 Do you have the disease? 

Diseased 
Positive 

Test 

All 

People 



Deriving Bayes’ Rule (2/2) 

 P(disease|test) = P(test|disease) * P(disease) 

 

 

 Do you have the disease? 
 (0.99 x 0.00001) / (0.99 x 0.00001 + 0.01 x 0.9999) = 0.00099 

 Less than 1 in 1,000 chance 

 

 What if you re-did the test? 

 Positive result –  Less than 1 in 10 

 Negative result – Less than 1 in 100,000 

 Probability changes with prior knowledge 

normalized 



Making Things Fuzzy 



Interpreting Bayesian Results 

Compariso

n value 

Maximum 

likelihood 

estimate 

95% Highest 

Density 

Interval 



Hierarchical Modeling with Parameters 

Heart Attack 
Bernoulli 

Individual 
Cholesterol 

Normal 

Genetic Tests 
Bernoulli 

Individual 
Exercise 
Normal 

Population 
Cholesterol 

T 

Population 
Exercise 

T 

Analytically 

Infeasible! 



Part 2 - The Real World 



Markov Chain Monte Carlo Method 

 Metropolis Algorithm 

 Chains explore the posterior via random walk (converges in the 

limit) 

 Proposal distribution controls how jumps are accepted/rejected 

 Gibbs Sampling 

 Conjoint parameter distribution for proposal distribution 

 Used by BUGS software 

 
j = (rand() < 0.5) ? 
    i – 1 : i + 1 
if (pop[j] > pop[i]): 
  i = j 
else: 
  p_move = (pop[j] / pop[i]) 
  i = (rand() <= p_move) ?      
      j : i 



Metropolis Algorithm 



Metropolis and Gibbs “gotchas” 

 Metropolis algorithm 

 Requires tuning of proposal distribution 

 “Clumpier” trajectories due to rejected jumps 

 Gibbs Sampling 

 Can get stuck when parameters are highly correlated 

 Must be able to derive conditional probabilities of each parameter 

on the other and generate samples 

 Both 

 Chains should be checked for autocorrelation (thinning) 

 May take time to find bulk of posterior (burn-in) 



Example – Parameter Recovery 

# Generate parameters 
mean1 = runif(1, 0, 100) 
mean2 = runif(1, 0, 100) 
prec1 = runif(1, 0, 1) 
prec2 = runif(1, 0, 1) 
 
# Generate data 
y1 = rnorm(s, mean1, 
       1/sqrt(prec1)) 
 
y2 = rnorm(s, mean2, 
       1/sqrt(prec2)) 

model { 
  # Likelihood 
  for (i in 1:numY1) { 
    y1[i] ~ dnorm(mean1, prec1) 
  } 
 
  for (i in 1:numY2) { 
    y2[i] ~ dnorm(mean2, prec2) 
  } 
 
  # Priors 
  mean1 ~ dunif(0, 100) 
  mean2 ~ dunif(0, 100) 
  prec1 ~ dunif(0, 1) 
  prec2 ~ dunif(0, 1) 
} 

R Code BUGS Code 



Example – Parameter Recovery (dense data) 

Burn-in: 100 steps 

Steps per chain: 1000 

Thinning: 2 

Real Values (1000 samples) 
 
• mean1: 82.89689 
• prec1: 0.3512249 
• mean2: 27.37247 
• prec2: 0.05239301 

Parameter Chains 



Example – Parameter Recovery (sparse data) 

Burn-in: 100 steps 

Steps per chain: 1000 

Thinning: 2 

Real Values (25 samples) 
 
• mean1: 82.89689 
• prec1: 0.3512249 
• mean2: 27.37247 
• prec2: 0.05239301 

HDI Width Increase 
 
• mean1: 8.5x 
• prec1: 3.97x 
• mean2: 7.2x 
• prec2: 5.57x 



Mutually Informing Data 

Heads/Tails 
Bernoulli 

Coin Bias 
Beta 

Mint Bias 
Beta 

Mint Scalar 
Gamma 

model { 
  for (i in 1:numFlips) { 
    f[i] ~ dbern(cb[c[i]]) 
  } 
 
  for (i in 1:numCoins) { 
    cb[i] ~ dbeta(cbA, cbB) 
  } 
 
  # Hyper-priors  
  cbA <- cbMn * cbScl + 1 
  cbB <- (1 – cbMn) * cbScl + 1 
  cbMn ~ dbeta(mintA, mintB) 
  cbScl ~ dgamma(mintS, mintR) 
 
  # Priors... 
} 



Example – Therapeutic Touch 

 Can TT practitioners detect “energy field” better than 

chance? 

 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 
5, 5, 6, 6, 7, 7, 7, 8 

 



Questions? 


