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Introduction

Inversion in a circle is a transformation process that “inverts” the plane by swapping points
which are inside a chosen circle (called the circle of inversion) with points which are outside
that circle. The process is quite simple, but the consequences for things such as lines, circles,
angles, and even inversion itself are both entertaining and enlightening1.

The Mirror Analogy

To get an intuitive understanding of inversion in a circle, let’s begin with a kind of inversion
that is familiar to many people: mirroring of the plane about a line.

Imagine that we’ve divided the plane into two halves using
a line, called the line of inversion (solid). The left-hand side
of the plane is a mirror image of the right-hand side, with
the properties we’d expect of a typical mirror.

For example, let’s pick two points (red and blue),
move them around, and watch what their inverted twins do.
The blue point’s motion is parallel to the line of inversion
(or mirror), and its twin follows it along the mirror exactly.
The red point’s motion is perpendicular to mirror and,
as expected, both it and its twin get closer to the mirror or
farther away from it at the same rate.

What if we were to bend our mirror slightly? For starters,
the dotted lines that were perpendicular to the straight-line
mirror are now perpendicular to the tangent lines at their
intersections with the curved mirror. These lines also meet
at a point finitely far away now.

In fact, our bent mirror looks and acts a great deal
like a portion of a very large circle whose center is due west!

1The picture on the title page was created via computer by tiling the plane with a checkerboard pattern
and then inverting it in a circle centered on the origin. Can you guess where the boundary of that circle lies?
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Let’s zoom out and look at our mirror as a completed circle.
How has the motion of our points changed?

Motion towards the mirror (blue points) and away
from the mirror (red points) follows lines that pass
through the circle’s center. In addition, a point and its
inverted twin move at different rates, as the “focal point”
of our mirror is now a finite distance from its edge. In the
next section, we’ll delve into the geometric reasons for these
phenomena.

Getting Geometric

As a first step into more formal territory, let’s examine
the details behind inversion of a single point in a circle.
With our original straight-line mirror, a point and its twin
were always the same distance from the mirror. With a
circle-mirror, things have changed: the center of the circle is
analogous to the point at infinity, meaning the distances a
point and its twin are from the mirror’s edge cannot always
be equal.

Specifically, the distance from the circle’s center
to the inside point and the circle’s radius have the
same ratio as the radius and the distance from the
center to the outer point.

In other words, is to as is to . This means that as points outside the circle get
farther and farther away, their inverted twins get closer to the circle’s center at a slower and
slower rate. It can be difficult to visualize, though, when the plane and circle of inversion
are both painted white.

To remedy this, let’s imagine we could see the entire plane in a single picture. We’ll paint
both our circle of inversion and the plane with different colors, fading them according to
distance from the origin. Then, we’ll invert the plane in that circle and observe how the
colors get rearranged (see next page).
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On the
←−
left, we can see the plane colored with blue

and the circle of inversion colored with yellow. Notice
that both colors get darker as they get further from
the origin (center).

On the
−−→
right is the inverted plane in the circle.

The inside and outside of the circle have been ex-
changed. The dark blue points, previously at the old
plane’s edges, are now at center of the circle, and the
golden yellow points at the old circle’s boundary now
form a halo around it.

Similar Triangles

Consider the blue and red points outside
this circle and their inverted twins inside.
By adding in the dashed lines, two triangles
emerge, each consisting of the center point,
a red point, and a blue point:

Because of the link between inverted twins, we know that the following relationships hold:

center to inside

radius
=

radius

center to outside

center to inside

radius
=

radius

center to outside

A tiny bit of manipulation yields something interesting:

center to inside

center to outside
=

center to inside

center to inside

From here, it’s easy to see that the center to inside side of the small triangle corresponds

to the center to outside side of the large triangle, and the center to inside side of the
small triangle corresponds to the center to outside side of the large triangle.
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Since both triangles share the angle at
the center, we can conclude that they
are similar by side-angle-side.

Putting it all together, the angle
correspondence on the right holds for
any two pairs of inverted twins. We can
use this result immediately to show that
circles always invert to circles.

Preservation of Circles

On the left, we have our circle of inversion (solid) and
two pairs of inverted twins (red and blue). Inside the
circle of inversion, there is a smaller circle (dashed)
whose diameter is given by the inside points. That is,

inside to inside is a diameter of .

Let’s pick a random point on the inner circle,
construct its inverted twin, and connect our points
with lines as shown ↓

This construction should look famil-
iar from the previous section with
the addition of two triangles due to
the random point.

In total, we have four triangles,
grouped below as two pairs of
similar triangles.
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After filling in our similar triangle angles, we can make quick work of this problem by using
the fact that inside to inside is a diameter of the inner circle.

The double-lined angle is
exterior to the triangle
inscribed on the inner
circle, making it the sum of
the shaded angle and 90◦.

Thus, we can carry the
90◦ angle outside and prove
that our random point’s
twin lies on a circle which
has outside to outside

as a diameter.

Remember, we choose our point at random, so this means any point on the inside circle will
lie on the outside circle along a ray cast from the center of the circle of inversion.

Lines are Circles

From the handful of facts we have learned so far, it is possible to infer the behavior of
inversion in a circle for several special cases. One conceptual hurdle that must be cleared,
however, is the idea that lines are circles whose centers are infinitely far away. From a local
perspective, the circle appears as a straight line because any indication of the curve would
contradict the center being infinitely far away.

With this in mind, what would we expect lines which pass through the center of our circle
of inversion to invert to? If lines are infinite circles, circles invert to circles, and our line
touches the center (whose inverted twin is infinitely far away), then our line’s inversion is
the same line!2

This “same” line, however, has its points
outside the circle swapped with its
points inside the circle as demonstrated
on the right.

The points that lie on the circle of
inversion itself, of course, remain fixed,
as they are their own inverted twins.

2Another way to think of it is that a point and its inverted twin must be co-linear with the center. If a
line passes through the center, it’s not possible to stray from that line during inversion.
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After discussing lines which pass through the center
of the circle of inversion, it’s natural to wonder about
lines which do not.

Once again, we already know that lines are cir-
cles and circles invert to circles. Our original line
extends to infinity, so its inversion must touch the
center. Combined with the knowledge that a point
and its inverted twin are co-linear with the center, we
have everything needed to construct the diagram on
the left.

Thus, lines that do not pass through the center
are inverted to circles that do.

Orthogonal Circles

A particularly noteworthy case of the preservation of circles during inversion is when the circle
we’re inverting is orthogonal to the circle of inversion (i.e. the tangent at their intersection).

Orthogonal circles invert to themselves, and this can be proven
by remembering three facts about inversion in a circle:

1. Circles invert to circles

2. Points on the circle of inversion invert to themselves

3. Pairs of inverted twins are co-linear with the center

These three facts serve to constrain an orthogonal circle’s inverse
to be a single circle: itself. Note, of course, that the interior of
this circle is exchanged about the circle of inversion.

We can actually construct a point’s inverted twin using
just orthogonal circles! After drawing an orthogonal circle
through our point, we need only find a second orthogonal
circle that also passes through it.

Our point’s twin will lie at the other intersection of our
two orthogonal circles. This is an immediate consequence of
the fact that orthogonal circles invert to themselves and that
incidence is preserved during inversion.
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Preservation of Angles

Inversion in a circle preserves angles between curves, such as the
two pictured to the right (solid and dashed).

Precisely, this is the angle between the tangent lines (dot-
ted) at the point of intersection.

We can show angle preservation by
replacing our curves with two or-
thogonal circles that are tangent
to our tangents and intersect at the
same point.

As in the previous section, we
know that the other point where
our orthogonal circles intersect
is the inversive twin. With the aid
of the diagram, it’s trivial to see
that the tangency relationship will
be preserved by symmetry and thus
so will our angle (albeit, going the
other way).

As there are an infinite number
of orthogonal circles relative to a
circle of inversion, this technique will
work for any two curves.

Preservation of Inversion

For the capstone of this paper, we will now demonstrate that inversion itself is preserved
during inversion. This is an especially beautiful result, and its proof is as simple as it is
elegant.

To start, we need only remind ourselves that points on the circle of inversion invert to
themselves, as do orthogonal circles. With this in mind, we can imagine inverting a trio of
intersecting circles as shown on the next page.
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Here we see our trio of circles (one small green, two small blue) inverted about the black
circle. Notice that the two small blue circles are orthogonal to the small green circle,
making the two red points on the left inversive twins in the small green circle.

Knowing that circles invert to circles, and that both incidence and angles are preserved is
enough to prove that the inverted trio maintains the orthogonal relationship between the
two large blue circles and the large green circle. As such, if we now think of the large
green circle as the circle of inversion, it is easy to see that the two red points on the right
are also inversive twins.

With this fact, we are free to apply inversion in different circles in any order we please,
knowing that the inversive relationship between points will be preserved throughout.
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In preparing for this paper, I spent time writing a program that would invert images in a
circle for me so that I could experience it firsthand. The cover of this paper and a few of
the images throughout were generated using it.

For my final page, I’d like to share one image that was generated by tiling the plane with
rainbow-colored squares and inverted in a small circle at the center. I found it to be very
pleasant, and when rotated on its side (as below), it reminded me of the sun reflecting off
the ocean. Perhaps I’ll title it Rainbow Ocean.

Thank you,
Michael Hansen
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