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Background

Transfer entropy (TE) is an information-theoretic measure of directed information flow in-

troduced by Thomas Schreiber in 2000 [6]. It has received much attention in neuroscience

lately for its potential to identify connections between nodes in a biological network, such as

individual neurons, groups of neurons, or entire regions of the brain [1]. This is important,

as accurate conclusions drawn from a network analysis must be grounded in a meaningful

functional-connectivity matrix.

In comparison to other commonly used information-theoretic measures, TE has many

desirable properties:

• It is model-free, since no explicit model of how events influence each other is assumed1

• It can detect non-linear interactions between nodes

– In contrast to Granger Causality, which can only detect linear interactions

• It is asymmetric, so the direction of information flow is included

– In contrast to Mutual Information, which is a symmetric measure

In its discrete form, TE is computed over a time series which has been binned and

whose state space is often binary. This form is ideally suited for neuron spike trains, where

information is presumed to be transmitted by neurons modulating the timing of all-or-

nothing spikes. The TE algorithm is run for every pair of neurons i, j ∈ N and produces a

square matrix T of size |N | where Tij is the estimated information flow from j → i (Figure 1).

1Aside from the assumption that events in the future cannot influence events in the past!
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Figure 1: High-level view of TE algorithm. N time series are used to produce an N ×N matrix
T where Tij is the TE from j → i.

Mathematically, we can derive the formula for TE by calculating entropies for a node i,

both with another node j and by itself. In the first case, we can write

Hij = −
∑
t

p(it+1, it, jt) log p(it+1|it, jt)

where it is 1 if a spike occurred at time t and 0 otherwise (same for jt), t ranges over all

recorded time bins, and p is the probability of a given spike pattern. As with other entropic

measures, these probabilities are estimated from the data itself, which can lead problems due

to a finite sample size (more on this later). If we exclude node j from the entropy calculation

for i, we get

Hi = −
∑
t

p(it+1, it, jt) log p(it+1|it)

If j is transferring information to i, we should see a drop in Hij relative to Hi, since

knowing the history of j would reduce uncertainty about the future of i. Thus, TE is the

difference between these two entropies2:

Tij = Hi −Hij =
∑
t

p(it+1, it, jt) log
p(it+1|it, jt)
p(it+1|it)

(1)

Calculating TE using Equation 1 results in a measure called delay 1 transfer entropy

2We subtract Hij from Hi in order to keep TE positive. Luckily, we can always ignore node j, so knowing
its history will never increase our uncertainty about i.
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(D1TE). This measure assumes that j is transferring information to i with a delay of one

time bin (Figure 2 left). This isn’t always ideal, however, because neurons (or other kinds of

nodes) may communicate at a variety of delays. Therefore, it is useful to parameterize D1TE

with a delay parameter d, resulting in a measure called delayed transfer entropy (Figure 2

right).

Figure 2: Delay 1 TE for the time series of neurons i and j (left). Delayed TE for the time series
of neurons i and j at delay d (right).

Because the delay time between each node in the network is not known beforehand,

delayed TE is often computed for several time delays. This produces a TE matrix for each

delay time (
d

T ), requiring a reduction step to produce the final TE matrix T (Figure 3). Two

reductions are common:

• For Tij, take the maximum value of
d

Tij for all d

– This is called peak transfer entropy (TEPk)

• Compute the coincidence index for some window w such that

– Tij =
∑

d∈w

d

Tij/
∑

d

d

Tij where w is centered on the peak value

– This is called (surprise, surprise) coincidence entropy transfer entropy (TECI)

The final kind of transfer entropy we’ll investigate in this TE tour-de-force is called

higher-order transfer entropy (TEHo). With TEHo, we consider more than two time bins

for the receiving time series i and/or more than a single time bin for the sending time series j

(Figure 4). This may also be computed over multiple time delays like delayed TE, resulting in
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Figure 3: Multiple delayed TE matrices must be reduced down to a single TE matrix.

analogous peak and coincidence index measures (TEHoPk, TEHoCI). In contrast to higher-

order TE, the previously discussed TE measures (TEPk, TECI) are called first-order.

With TEHo, we must be especially careful of the finite sample problem. As the number

of bins we consider increases, it becomes more unlikely that we will observe enough samples

of each pattern to correctly compute entropies.

Neuron i

Neuron j

i-order 2, j-order 3

Figure 4: Higher order TE with a receiving order of 2 and a sending order of 3. It can also
computed over a number of delays like TEPk and TECI

Algorithm Analysis

As is often the case, the mathematical formula for TE does not make it immediately obvious

how computation time will scale with its various parameters. TE may have great information-

theoretic properties, but the algorithms that actually compute it must be fast enough to allow

for the analysis of real world data. For example, despite TE giving better results compared

to other measures in [1], the authors concluded that Joint Entropy may provide a better

trade-off in terms of computation time (their TE implementation took 16 hours to run on 5

minutes of data from 60 neurons for a single time bin).
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Here at IU, Shinya Ito, John Beggs, and I have developed an algorithm for computing TE

that is several orders of magnitude faster than previous implementations (tens of seconds for

calculations with hundreds of neurons). At a high level, our TE algorithm looks like Listing 1,

though the actual code is mostly written in C with a MATLAB interface3.

The first-order and higher-order algorithms are essentially identical, with the only differ-

ence being that the sizes of certain variables are known at compile time for first-order (i.e.

only 23 patterns are possible); this allows for a slight speed-up when compiler optimizations

are turned on. We calculate pattern frequencies by (metaphorically) stacking shifted copies

of the i and j time series on top of one another (line 7) and counting the individual column

vectors of the resulting R×D matrix as the patterns (line 15).

To quantify the computational time complexity of the algorithm, we must identify which

variables will dramatically affect the algorithm’s run-time. For our TE algorithm, the rele-

vant variables for a time complexity analysis are as follows:

• duration4

– The last time bin for which we have data. This assumes a fairly consistent firing

rate for all neurons.

• order

– The sum of the receiving neuron order (i) and the sending neuron order (j) (plus

one for the predicted time bin)

• neurons

– The total number of neurons in the calculation

3A copy of the code is currently available at http://code.google.com/p/transfer-entropy-toolbox/
4This changes for sparse time series. See below.
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Listing 1: High-level transfer entropy algorithm

1 durat ion = . . . % From data

2 order = i o r d e r + j o r d e r + 1

3

4 for i = 1 : neurons

5 for j = 1 : neurons

6 % Pair o f time s e r i e s p l u s s h i f t e d c o p i e s

7 i j s e r i e s = [ a l l s e r i e s ( i ) ; a l l s e r i e s ( j ) ; . . . ]

8

9 % Count p a t t e r n s f o r a l l t ime b i n s

10 counts = zeros (1 , 2ˆ order )

11 while t <= durat ion

12 pattern = zeros (1 , order ) % Pattern at time t

13

14 % Check each s e r i e s f o r a s p i k e at time t

15 for s = i j s e r i e s

16 i f cur rent ( s ) == t

17 pattern ( index ( s ) ) = 1 % Spike occurred at t

18 cur rent ( s ) = next ( s )

19 end

20 end

21

22 counts ( pattern ) = counts ( pattern ) + 1 % Count p a t t e r n s

23 end

24

25 % C a l c u l a t e TE from j −> i

26 for c = counts

27 . . . % Estimate t r a n s i t i o n p r o b a b i l i t i e s

28 end

29 end % f o r j

30 end % f o r i
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For brevity, let’s say N = neurons, D = duration, and R = order.

Starting on line 4, we begin the two outer loops for all pairs of neurons. We must run

N2 iterations of the inner loop (starting on line 7), so we should expect our calculation time

to grow quadratically in the number of neurons. Figure 5 shows actual timing results where

N is varied while D and R are held constant5.

The data for these timing calculations were generated randomly using an unbiased

Bernoulli process with noise (p ≈ 0.5) for all triplets {n, d, r} such that:

{n, d, r} ∈

{75, 100, 125, 150, 200, 250}× neurons

{7500, 10000, 25000, 50000, 75000, 100000}× durations

{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} orders

where n is the number of neurons, d is the duration, and r is the total order (1 + ith order

+ jth order). For first-order calculations, r = 3.
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Figure 5: TE calculation time as a function of the number of neurons (N). Each line represents
an {n, d, r} triplet. Both 1st order and higher-order times grow quadratically.

The spike counting loop starting on line 11 does not actually need to visit all times

t ∈ {1 · · ·D}. For sparse time series, a considerable speed-up can be had by only visiting

5All timing results were obtained on a 3.4GHz 8-core Intel Xeon X5492 with 32GB of RAM (Octave,
64-bit Ubuntu Linux, no parallelism).
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the time bins in which spikes occurred. In this case, D is a poor estimator for the run-time

of this loop. Because real world time series are usually quite sparse, I will be using Davg

instead, which is D times the average firing rate of all neurons (
∑

n (Sn/D) where Sn is the

number of spikes for neuron n).

Using Davg, we should expect the calculation time to grow linearly when N and R are

held constant (once again, assuming a consistent firing rate). In Figure 6, we can see this

is the case for first-order calculations. Higher-order calculations appear to grow sub-linearly

in Davg due to the increasing overlap of time bins between the randomly generated series.

This is an important point, as correlations between time series may significantly reduce the

calculation time at higher orders.
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Figure 6: TE calculation time as a function of the time series length (Davg). Each line represents
an {n, d, r} triplet.

Our last variable, R represents the order of the calculation and is used (implicitly) on

line 15 and in the reduction loop on line 26. The vector ij series holds all of the time

series examined within the inner loop. This includes the original i and j series as well as

their shifted copies6, making ij series size 1 × R. With N and Davg held constant, we

should expect our calculation time to grow exponentially in R with a linear component that

6The C code does not actually copy any of the series for shifting, saving an approximately O(DavgR)
operation for each inner loop iteration. Hooray for pointers!
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depends on Davg. As shown in Figure 7, this becomes apparent once orders beyond 12 are

measured. Note that while the time growth is exponential in R, the longest calculation time

shown only took about 39 minutes (n = 250, d = 10, 000, r = 16). Therefore, the orders used

in practice (R < 20) will be tractable, especially if parallelism is used (see next section).
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Figure 7: TE calculation time as a function of the total order. Each line represents an {n, d, r}
triplet.

Parallelism

All timing results given thus far have not exploited the inherently parallel nature of our

algorithm. The inner loop starting on line 7 of Listing 1 can be executed independently for

every pair of neurons, making this algorithm “embarrassingly parallel”7.

A simple, coarse way to make use of this inherent parallelism is to compute different

blocks of the final TE matrix on different threads, processors, or computers (Figure 8 left).

Given the typical number of neurons in our calculations (hundreds), it’s feasible to split the

work among N processors and reduce the outer-loop complexity from quadratic to linear.

7There are additional opportunities for parallelism in the inner loop, such as dividing up portions of the
time series, but I do not explore them in this paper.
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Figure 8: Calculate blocks of the TE matrix in parallel (left) or calculate individual cells on
separate GPU processors (right).

Embarrassingly parallel algorithms often go well with a particular piece of hardware: the

GPU (Graphics Processing Unit). Most modern computers have GPUs that are capable of

processing dozens or hundreds of work items in parallel. This would mean that many cells

of the TE matrix could be computed simultaneously (Figure 8).

With scientific computing platforms like NVIDIA’s CUDA[5] and OpenCL[2], it is now

possible to offload calculations onto an off-the-shelf GPU and gain considerable performance

improvements. I am currently porting the algorithm to the CUDA platform to see how it

compares in speed to the MATLAB version.

Model Evaluation

From the analysis above, we should be able to predict the (non-parallel) run time T of a

transfer entropy calculation using the following equation:

T (N,Davg, R) = c1N
2[c2(DavgR + 2R)] (2)

where c1 and c2 are constants that depend on the particular machine and desired time units

(I use seconds for my calculations).
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As mentioned above, D may only be a rough estimate of the number of visited time bins

for real world data. The actual value for each iteration of the inner loop (starting at line 7

in Listing 1) will depend on the time series in ij series. Specifically, this will be the size of

the unioned set of all time bins in ij series (|
⋃
Sx|, x ∈ ij series). Since this quantity

is almost as expensive to compute as TE itself, I will be using Davg as an estimate.

A simple way to evaluate this model is to do the following:

1. Collect timing data on a particular machine for randomly generated time series using

a variety of N , D, and R values

2. Search for suitable values for c1 and c2 using the data in step 1

3. Plug the obtained values into Equation 2 and attempt to predict the calculation times

of real-world time series

For step 1, I used the same random time series generated in the analysis to measure

calculation times. Step 2 was accomplished by running a simple Bayesian model that at-

tempted to fit proper c1 and c2 values in Equation 2 for the random data8. In my model,

each calculation time was assumed to be drawn from a normal distribution whose mean was

calculated using Equation 2 and whose precision was fixed at 0.01 (to accommodate noise).

c1 had a uniform prior in [0, 1] and c2 had a uniform prior in [0, 1000].

For my test machine, I obtained the values c1 = 0.04678 and c2 = 71.93 for the first-order

data. For the higher order data, I obtained c1 = 3.817× 10−11 and c2 = 580.7. Using these

values, I compared the predicted calculation times of 14 real-world time series to the actual

calculation times9. As shown in Figure 9, my model is quite good at predicting calculation

times, even when trained exclusively on random data.

8We used the OpenBUGS software [4] with a burn-in of 2,000 steps, a chain length of 50,000 steps, and
a thinning value of 2.

9These “real-world” time series were from rat cortical cells, measured with an electrode array.
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Figure 9: Actual run time versus predicted run time.

Comparison of 1st Order and Higher Order

In a forthcoming paper, Shinya Ito investigates the performance of D1TE, delayed TE (TEP-

k/TECI), and two variants of normalized cross-correlation (called NCCPk and NCCCI) on

simulation data from Izhikevich’s neuron model [3]. He finds that TECI performs better on

average, achieving a nearly 70% TPR when FPR = 0.01. TPR (true positive rate) = TP
TP+FN

and FPR (false positive) = FP
FP+TN

where TP , TN , FP , and FN are the counts of true

positives, true negatives, false positives, and false negatives respectively.
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Methods

Given that higher-order TE calculations are much more tractable with the algorithm above,

it makes sense to investigate whether these kinds of calculations can offer better TPR/FPR

values than first-order. To investigate this, I used the same data from Shinya’s experiments

and calculated TEPk, TECI, TEHoPk, and TEHoCI for the parameters listed in Figure 10

(all measures were computed over delays of 1 to 30).

Measure i Orders j Orders Windows
TEPk 1 1 1
TECI 1 1 3,5,7,9

TEHoPk 1-5 1-5 1
TEHoCI 1-5 1-5 3,5,7,9

Figure 10: Actual run time versus predicted run time.

The simulation data was generated from code provided by Izhikevich in [3], modified

slightly to turn off spike-time dependent plasticity after one hour. The model had 1000

neurons, 80% of which were regular spiking excitatory neurons and 20% of which were

fast-spiking inhibitory neurons. Each neuron had 100 synaptic connections with varying

delays for excitatory neurons (uniform distribution from 1-20 ms) and a fixed delay of 5 ms

for inhibitory neurons. Inhibitory neurons were only connected to excitatory neurons, but

excitatory neurons had no restrictions. While inhibitory synaptic weights were fixed at 5

mV, excitatory weights could change over time due to STDP in a range from 0 to 10 mV.

Eight simulations were run, each for two hours (with STDP turned off in the final hour

to fix synaptic weights). Random “thalamic” input was provided to all neurons throughout

the simulation. Only the final 30 minutes of spike train data was used to estimate connec-

tivity. In addition, 100 neurons (80 excitatory, 20 inhibitory) were sub-sampled from the

entire population to approximate electrode array recording. TE was calculated for these

100 neurons, with performance being evaluated based on the number of correctly identified

connections whose absolute weights were considered significant (≥ 1 mV).
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Results

With the many different combinations of parameters, the final data set I obtained was high-

dimensional, and thus difficult to visualize. As a first pass, it helped to do an ROC plot

where curve each represented a particular combination of parameters. Figure 11 shows that

no measure stands out immediately as “better”, though TEHoPk appears qualitatively to

have an advantage. There are many more parameter combinations for the higher-order

measures, so TEPk and TECI are difficult to make out. This means, though, that neither

first-order measure is qualitatively different from the higher-order measures.
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Figure 11: ROC curves for every combination of parameters (averaged over all data sets).

In order to compare measures more directly, I plotted the TPR values for each measure

at an FPR of 0.01 (Figure 12). The “best” measure is labeled with its window size and

order. Underneath the plot is a table with the top 20 measures, sorted descending by TPR.

From the plot and corresponding table, we can observe several things:

1. TEHoCI dominates with 17 of the top 20 slots. Only two first-order measures made

it, and neither have an average TPR > 0.7 (#9 and #12).

14



2. Coincidence index is clearly a better reduction method. Only a single peak-based

measure made it into the top 20 (#19).

3. The top TEHoCI measures have window sizes of 3 and 5 as well as orders ≤ 3 (remem-

ber that orders up to 5 were tested). This suggests that bumping up the calculation

order just slightly could result in better performance.

Conclusions and Future Work

With this preliminary analysis, it appears that TEHoCI with orders ≤ 3 gives significantly

better results than TEPk, TECI, and TEHoPk. Since the computational complexity of

second or third order TE is close to that of first-order, it is recommended that TEHoCI be

used.

For future work, it will be necessary to determine what kinds of connections are identified

by the different measures (i.e. excitatory vs. inhibitory, synaptic weights). In addition,

TEHoCI should be benchmarked against other methods on real-world data sets.
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Measure Window i, j Order Avg. TPR Error
1 TEHoCI 5 3, 2 0.7343 0.0296
2 TEHoCI 5 2, 2 0.7169 0.0296
3 TEHoCI 5 1, 2 0.7132 0.0284
4 TEHoCI 3 3, 3 0.7096 0.0243
5 TEHoCI 3 2, 2 0.7045 0.0256
6 TEHoCI 3 2, 3 0.7018 0.0236
7 TEHoCI 3 1, 2 0.6992 0.0243
8 TEHoCI 3 1, 3 0.6970 0.0229
9 TECI 5 1, 1 0.6918 0.0270
10 TEHoCI 7 3, 2 0.6882 0.0324
11 TEHoCI 5 2, 1 0.6860 0.0285
12 TECI 3 1, 1 0.6814 0.0229
13 TEHoCI 3 2, 1 0.6814 0.0240
14 TEHoCI 7 3, 1 0.6808 0.0306
15 TEHoCI 5 3, 3 0.6718 0.0257
16 TEHoCI 3 3, 2 0.6678 0.0216
17 TEHoCI 3 4, 4 0.6654 0.0224
18 TEHoCI 3 3, 4 0.6644 0.0223
19 TEHoPk 1 1, 3 0.6623 0.0463
20 TEHoCI 5 3, 1 0.6614 0.0243

Figure 12: Top: TPR of various measures with different sets of parameters. Bottom: details of
top 20 measures. x-axis order is not meaningful.
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