
Depth map estimation for plenoptic images

Michael Hansen Eric Holk

December 16, 2011

Abstract

Depth map estimation is a prerequisite for useful
plenoptic rendering algorithms, such as all-in-focus
rendering and depth-based matting. We provide a
simple GPU-based algorithm that estimates the depth
of each pixel in the rendered image as well as the un-
certainty of that estimate. We perform several ren-
dering experiments using depth information. Finally,
explore what factors harm the accuracy of depth es-
timation and discuss potential improvements to our
algorithm.

1 Introduction

Plenoptic photography enables exciting opportuni-
ties for the post-processing of digital photos and
videos. Using special software, it is possible to do
real-time refocusing and viewpoint adjustment after
the photo has been taken. Plenoptics also enable ef-
fects that are impossible with a traditional camera,
such as rendering with an effectively infinite depth
of field. These effects are made possible by cap-
turing the scene’s full radiance function; plenoptic
cameras capture color as a function of position and
direction, whereas traditional cameras only capture a
single color per position. While the benefits to tra-
ditional photography are obvious, plenoptic imaging
techniques have also attracted the attention of movie
producers to expand the possibilities in 3D filmmak-
ing.

High quality plenoptic rendering often depends on
having depth information for a scene. Traditional
stereo depth estimation, like that done by human
eyes, uses the difference between the images in both
eyes to judge distance. Since it is possible to render

at least two viewpoints in a plenoptic image, tradi-
tional stereo depth estimation applies easily. Yet, this
discards the rich information present in the scene’s
full radiance function. By using the many microim-
ages present in the plenoptic lightfield, it is possible
to do more sophisticated depth estimation. In this pa-
per, we explore techniques for estimating the depths
of all pixels in a rendered image, and experiment
with several depth-based rendering algorithms.

We make the following contributions.

• We demonstrate that doing GPU-based compu-
tations from the start enables rapid experimen-
tation without requiring significantly more ef-
fort than CPU-only approaches. (Section 3.1)

• We generalize a traditional stereo depth algo-
rithm to plenoptic lightfield images and show
that even this simple method produces usable
results. (Section 3.2)

• We present several rendering experiments that
incorporate depth information. (Section 4)

• We explore areas in which our algorithm pro-
duces inaccurate results. Based on this, we dis-
cuss techniques for determining uncertainty in
our depth maps and look towards the poten-
tial for using it to develop more accurate depth
maps. (Section 5)

2 Background

In this section we introduce the basic ideas behind
plenoptic photography and depth estimation.

1



2.1 Plenoptic Photography

Traditional photographs capture only a single color
for a given position in a scene. This discards the di-
rectional component of light. Objects reflect light in
many different directions, and thus light rays from
multiple objects may arrive at the same point on a
sensor, causing blurring in the final image for ob-
jects that are not in the plane of focus. In this paper,
we consider a plenoptic camera, which is designed to
capture the directional variation of light as well. The
representation of the light in a scene in terms of posi-
tion and direction is known as the scene’s radiance.

We can represent the radiance as a function
r(q, p), which is the value of light at position q and
direction p. Value is typically the red, green and blue
color components, but may represent other aspects
such as polarization. The parameters q and p are
both two dimensional vectors, representing the po-
sition on the camera sensor and the direction of the
given light ray. It is common to use a one dimen-
sional simplification, where q and p are both scalar
values.

Using this characterization, we can represent an
image like would be captured by a traditional camera
as follows:

I(q) =

∫
p
r(q, p) (1)

By capturing the full radiance function instead of a
single image, we can computationally simulate vari-
ous optical elements and render many images from a
single lightfield. For example, we can computation-
ally change the plane of focus or the point of view.
The ability to render different points of view leads
to the ability to calculate depth information for the
rendered image.

Capturing full radiance function is accomplished
by a plenoptic camera, which is illustrated in Fig-
ure 1. The camera is similar to a traditional cam-
era, except that a microlens array has been inserted
immediately in front of the sensor. The additional
lenses allow us to recover the directional variation in
the captured light. Figure 2 shows a close-up of the
raw radiance capture. Notice how the same object
appears in multiple microimages but in slightly dif-

Sensor

Microlens
Array

Main
Lens

Object

Light Rays

Figure 1: A plenoptic 2.0 camera with the microlens array behind the
main len’s focal plane.

Figure 2: A crop of a raw lightfield capture. Each of the nine smaller
images are referred to as a microimage.

ferent positions. This disparity between correspond-
ing objects in the microimages is what allows us to
estimate a depth map for the scene.

There are two main variants of plenoptic cameras.
The “Plenoptic 1.0” camera focuses the microlenses
at infinity. This causes the microimages to have a
uniform color for objects that are at the plane of fo-
cus, which needlessly sacrifices spatial resolution.
The “Pleonoptic 2.0” camera moves the camera sen-
sor such that the microimages are focused, thereby
enabling the rendering of much higher resolution im-
ages [5].

We can model camera lenses and other optical el-

2



ements using a matrix. These matrices represent var-
ious shearing transforms on the 4D lightfield (qx,
qy, px, py). By computationally shearing the light-
field after the fact, we can refocus the image. This
is most easily accomplished by “rendering at an an-
gle” through the lightfield, which in four dimensions
corresponds to blending together patches from adja-
cent microimages (see Figure 3 for an example). The
amount by which the position of the patch varies be-
tween microimages is known as the slope, and dif-
ferent slopes correspond to different image planes in
focus.

Figure 3: Normal plenoptic rendering.

As shown in Equation 1, rendering an image cor-
responds to integrating over a range of directions at
each point. When we apply this integration process
to the full lightfield capture from which Figure 2 was
taken, we can produce an image like the one in Fig-
ure 4. This image has a shallow depth of field be-
cause the integration included a wide range of direc-
tions.

2.2 Stereo Depth

Humans use stereo vision to approximate the depth
of objects in scene. This is modeled by computing
the disparity, or the relative separation, between ob-
jects in each eye. Far-away objects will appear at
virtually the same place in each eye (a low dispar-

Figure 4: An image rendered from a plenoptic lightfield capture.

ity), while objects that are close-up will be in very
different positions on each eye (a high disparity). We
illustrate this process in Figure 5. In a digital image,
disparity is computed on a pixel-by-pixel basis, re-
sulting in a pixel-wise depth map. Successfully de-
termining the disparity between pairs of pixels in two
digital images, one from the “left eye” and one from
the “right eye,” requires an approximate solution to
the correspondence problem, which is to determine
what pixels from the left and right images correspond
to the same point in the scene.

There is a circular dependence between dispar-
ity and correspondence: computing the disparity be-
tween two pixels requires knowing which pixels cor-
respond to each other, and determining which pixels
correspond requires knowing their disparities! Depth
estimation algorithms address this issue by testing
for the strength of correspondence at varying dispar-
ities. The strongest correspondence is considered to
be the correct disparity, and from this disparity the
correct depth is derived.

3



Left Eye Right Eye

Figure 5: Traditional stereo vision. The disparity between the same ob-
ject in the left and right eyes can be used to estimate the ob-
ject’s distance or depth.

3 GPU-based Plenoptic Depth Map-
ping

3.1 Rapid development with GLSL

We have implemented a plenoptic rendering program
using Python and OpenGL (with the pyopengl bind-
ings [6]). The program generates depth maps on the
graphics card (GPU) and uses these to enable dif-
ferent rendering techniques, such as those demon-
strated in Section 4. We found this approach to be
very advantageous. The conventional wisdom is to
do a pure CPU implementation first, and then later
optimize by running on the GPU. Our experience
has been that GLSL (the programming language for
OpenGL GPU programs) is well-suited for graphical
tasks and thus it was not significantly more difficult
to implement rendering algorithms with the GPU.
Furthermore, Python simplifies many of the details
such as loading images and setting up an OpenGL
environment. The payoff is immense; the GPU ver-
sions run in seconds at worst, while a CPU imple-
mentation could easily take minutes. Although we
did not achieve interactive performance, we did not
spend much time waiting on rendering, and thus we
could quickly try slight variations in our rendering
algorithms.

Rendering is implemented as a GLSL fragment
shader, which is a small program that runs on the
GPU. Shaders are by nature output driven; the main

void main() {
vec2 q =
gl_TexCoord[0].st / micro_size;

vec2 p = floor(q);
vec2 offset = q - p;
vec2 shift = vec2(shift_x, shift_y);

gl_FragColor = texture2DRect(
lightfield,
p*micro_size+shift+(slope*offset)

);
}

Figure 6: A basic pinhole rendering shader. The parameter slope
controls which plane is in focus, and the shift_x and
shift_y parameters control the point of view.

purpose of a fragment shader is to determine what
color a given output pixel should be. Plenoptic ren-
dering works by determining the microimage that
best fits the current pixel, and then selecting a patch
from that and adjacent images to blend together. A
simple pinhole shader is given in Figure 6, where
slope controls the focus. Theoretically, in a pin-
hole camera, everything should be in focus, so this
parameter actually controls which plane has no arti-
facts.

3.2 Generating depth maps

There are two obvious ways to generate a depth map
for a plenoptic image. The first is to calculate depth
for each lightfield pixel, while the second is to cal-
culate the depth of each rendered pixel. We have
chosen the second approach. The lightfield approach
has the advantage that the depth map can be reused
even when rendering a new point of view, but is dis-
advantageous when rendering all-in-focus because
each rendered pixel will have many candidate slopes.

The shader in Figure 6 can be modified to gener-
ate a depth map. The idea is to find similar regions
in adjacent microimages, and determine the dispar-
ity that results in the best overall matches. For a
given pixel, we sample an 6 × 6 pixel patch around
it, and then compare this with patches at various dis-
parities in several adjacent microimages. We com-
pare patches using the Euclidean distance in RGB

4



Figure 7: An example depth map.

color-space, but more sophisticated measures, such
as cross-correlation, could be used as well. After
considering patches at various slopes, the algorithm
picks the best score (lowest color distance) and re-
ports this as the correct slope for the given pixel. An
example depth map is given in Figure 7. The GLSL
shader program used to calculate this depth map is
given in Appendix A.

To compare patches, we consider the eight neigh-
boring microimages, rather than a single pair. This
gives us more points to fit to one slope, which should
smooth out much of the noise. The fact that our algo-
rithms must simultaneously match disparities in sev-
eral directions suggests that we should outperform a
traditional stereo approach in some cases.

4 Rendering Experiments

As mentioned earlier, the use of Python and OpenGL
enabled rapid experimentation with rendering tech-
niques. In this section, we discuss three effects that
are enabled by depth maps.

Figure 8: An image rendered with an infinite depth of field, made pos-
sible using a depth map.

4.1 All-in-focus

Once we know the depth of each output pixel, render-
ing with an infinite depth of field (which is not possi-
ble using a traditional camera) is relatively straight-
forward. Rather than passing the slope in as a param-
eter, we simply have the shader read the desired slope
out of a depth map. An example is given in Figure 8.
Note that in this image, we have performed some
manual filtering on the depth map to give smoother
results (both a median and Gaussian filter were used).

In our experience, all-in-focus rendering is fairly
tolerant of inaccurate depth maps. The reason is that
our depth maps tend to be the most inaccurate in re-
gions of low texture, since these regions do not have
much variation in match quality. Fortunately, arti-
facts introduced by rendering at the wrong slope are
significantly less noticeable in low texture regions.

4.2 Green Screen Insertion

Many visual effects in the movie industry rely on
matting videos together. This is normally done by
filming one scene in front of a green screen, and then

5



Figure 9: An example of depth-based green screen insertion. This could
easily be extended to do depth-based matting.

using computer software to replace the green back-
ground with another image or video. Movie mak-
ers and actors alike find green screens cumbersome
to use, and could benefit from the ability to do mat-
ting without a green screen. As a proof of concept,
demonstrate the insertion of a green screen, by sim-
ply drawing all regions beyond a certain depth in
green. Figure 9 shows an example of this, which also
uses a manually filtered depth map.

4.3 Atmospheric Effects

While matting can be accomplished without depth
information, other effects are impossible without
depth. Many atmospheric effects fall into this cate-
gory. For example, in computer graphics, fog is typ-
ically done by blending the fog color and the image
color with a weight determined by the distance from
the viewer. Generating depth maps allows us to insert
fog in photographs as well, which we demonstrate in
Figure 10.

Figure 10: An example of adding fog to a scene using depth informa-
tion. Notice that the more distant regions are darker.

5 Uncertainty Estimation

Our simple depth map estimation algorithm does
well in highly-textured regions, where false matches
between patches are unlikely. In regions with little
texture, however, it becomes much more difficult to
find the correct slope for a given pixel in the ren-
dered image. For these low texture regions, we found
that our rendering experiments came out much better
when we filtered the generated depth maps by hand.
Hand-tuning each depth map is not a scalable solu-
tion, however, especially for multiple viewpoints of
a single image or plenoptic video.

When estimating our depth maps, we determined
the “correct” slope for each pixel in the rendered im-
age by choosing the slope with the best score. Slopes
for each pixel were scored by computing the summed
color distances between adjacent patches along those
slopes. The slope with the lowest score (smallest to-
tal color distance) was assumed to be correct. In or-
der to estimate the uncertainty of that assumption,
we must compute some function on the slope score
distribution for each rendered pixel.

6



(a) Slope estimation in a low textured region. (b) Slope estimation in a high textured region.

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ��� ���

�
�
��
�
��
�
�
��

�����

(c) Slope distribution for a low textured region (lower is
better). There is no clear best slope.

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ��� ���

�
�
��
�
��
�
�
��

�����

(d) Slope distribution for a high textured region (lower is
better). There is a clear minimum score at about slope 14.

Figure 11: Example score distributions in low and high textured regions.

7



Figures 11(a) and 11(b) demonstrate how score
confidence varies in low and high texture regions.
In both cases, we are trying to determine the cor-
rect slope for the green point by matching a patch
around the green point with the patches around each
of the red points. The amount by which the red points
spread out across adjacent microimages is controlled
by the slope. The shading represents how strong of a
match each point is with the green point; white rep-
resents a very strong match, while black represents
a poor match. In Figure 11(a), the point under con-
sideration is in the background (see Figure 2), and
thus any of the background points will match about
as well. This is apparent from the large white regions
in the image, and also the wide valley in Figure 11(c).
On the other hand, in Figure 11(b) we consider a
point in a high texture region. Here the regions of
strong matches are much smaller, and there is only
one slope that produces a strong match in each of the
adjacent microimages. In Figure 11(d), the strong
match shows up as a sharp peak around the minimum
score.

Figure 12: Uncertainty in an estimated depth map. Low-textured re-
gions have higher uncertainty (black).

In Figure 12, we estimate the uncertainty in an
estimated depth map using the distance between
the slope distribution’s minimum and average score

(black means a smaller distance and thus more un-
certainty). Other approaches to estimating uncer-
tainty are possible as well. For example, we could
directly determine low texture areas by looking at the
derivative of the image, or by computing some other
measure of the “peakness” of the score distribution.
Figures 11(c) and 11(d) suggest that another good
metric would be to find areas where the match score
changes dramatically with small changes in slope. A
thorough evaluation is needed to determine the best
method of determining uncertainty.

6 Future Work

The depth maps generated with our simple algorithm
worked surprisingly well for our rendering experi-
ments, but a more sophisticated algorithm will be re-
quired for “real world” use. Specifically, the amount
of noise present in our depth maps is too high for sce-
narios where a human cannot perform fine-tuning by
hand. We propose to use a Bayesian filtering process
that will take into account our uncertainty estimation
in the depth map and edge information about the im-
age itself.

Bayesian filtering has been used by researchers in
the past to do image restoration [3]. Edges in the
image are detected using standard means, and this
information is used to inform the filtering process
by restricting smoothing across edges. The process
is Markov-based, and can be viewed as an energy-
minimization problem.

For our project, we plan to use both depth uncer-
tainty and edge information to restrict the flow of
depth values while smoothing the depth map. This
will be beneficial in portions of the image where re-
gions with low and high texture are connected and at
the same depth. Regions with low texture will have a
high depth uncertainty due the multitude of possible
slope matches (see Section 3), whereas high texture
regions have likely been assigned the correct slope
with low uncertainty. We would like the highly cer-
tain depth estimates to flow from certain to uncertain
regions, with edges inhibiting the flow.

8



7 Related Work

GPUs have already been used for high performance
rendering of plenoptic 2.0 images [2]. This work
was primarily about rendering different focal depths
and stereo 3D rendering. Our work draws inspiration
from this, yet focuses more on depth map generation
and the rendering effects that are enabled by depth
maps.

Other work, such as [4], has considered uncer-
tainty estimation as a means to improve depth maps.
This work demonstrates that confidence information
greatly improves depth maps and converges quicker
on a high quality depth map.

Early on, [1] demonstrated the recovery of depth
information from plenoptic images. The authors re-
port that considering several microimages produces
better results than simple stereo algorithms. They
additionally perform confidence estimation using the
image’s spatial derivative.

8 Conclusion

Depth map estimation using a plenoptic lightfield is
an interesting extension of the standard stereo depth
map problem. In the plenoptic lightfield, we have
multiple images of each point in the scene from dif-
ferent directions. With this extra information avail-
able, it is possible to estimate a depth map without as
many heuristics to guess at missing information.

In this paper, we demonstrated that a simple al-
gorithm can be used to generate surprisingly good
depth maps. We expect future improvements can in-
corporate more of the 4D nature of plenoptic images
to generate even more accurate depth maps. Our
GPU-based implementation allows for rapid exper-
imentation with a variety of rendering algorithms,
such as all-in-focus and green-screen insertion. We
proposed including edge and uncertainty information
in a Bayesian filtering process to further refine the
generated depth maps.

References

[1] E.H. Adelson and J.Y.A. Wang. Single lens
stereo with a plenoptic camera. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, 14(2):99–106, 1992.

[2] G. Chunev, A. Lumsdaine, and T. Georgiev.
Plenoptic rendering with interactive perfor-
mance using gpus. SPIE Electronic Imaging,
January 2011.

[3] S. Geman and D. Geman. Stochastic relaxation,
gibbs distributions, and the bayesian restoration
of images. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 6:721–741, 1984.

[4] J. Jachalsky, M. Schlosser, and D. Gan-
dolph. Confidence evaluation for robust, fast-
converging disparity map refinement. In 2010
IEEE International Conference on Multimedia
and Expo (ICME), pages 1399–1404. IEEE,
2010.

[5] A. Lumsdaine and T. Georgiev. The focused
plenoptic camera. In 2009 IEEE Interna-
tional Conference on Computational Photogra-
phy (ICCP), pages 1–8. IEEE, 2009.

[6] PyOpenGL – The Python OpenGL Binding.
http://pyopengl.sourceforge.net.

9



A Depth Map Shader

// -*- c -*-
#extension GL_ARB_texture_rectangle : enable
uniform sampler2DRect texture;
uniform float micro_size;
uniform vec2 texture_size;
uniform float shift_x;
uniform float shift_y;
uniform float patch_size;
uniform int patch_width;

void main() {
vec2 num_micro_images = texture_size / micro_size;

vec2 p = floor(gl_TexCoord[0].st / micro_size);
vec2 shift = vec2(shift_x, shift_y);
vec2 offset = gl_TexCoord[0].st / micro_size - p;

int num_patches = 3;
int num_images = 1;

float best_slope = 0.0;
float best_match = 10000000000.0;

for(float patch_size = micro_size / 2.0; patch_size >= 0.0; patch_size -= 0.5) {
vec2 left_base = p * micro_size + shift - offset * patch_size;

float score = 0.0;
for (int i = 0; i < num_patches; i++) {

for(int j = 0; j < num_patches; j++) {
vec2 pixel_shift = vec2(i, j);
vec4 left = texture2DRect(texture,

left_base
+ pixel_shift);

for(int m = -num_images; m <= num_images; m++) {
for(int n = -num_images; n <= num_images; n++) {

if(m == 0 && n == 0) continue;

vec2 right_base =
left_base + vec2(m, n) * (micro_size + patch_size);

vec4 right = texture2DRect(texture,
right_base
+ pixel_shift);

score += distance(left, right);
}

}
}

10



}
if(score < best_match) {

best_slope = patch_size;
best_match = score;

}
}

float color = best_slope / (micro_size / 2.0);
gl_FragColor = vec4(color, color, color, 1.0);

}

11


