
Adding Dynamic Types to C#

Michael Hansen

Indiana University

November 3, 2010

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 1 / 26

What is C#?

If C++ and Java had a baby. . . and it was adopted by Microsoft

Modern C-style language for the .NET runtime
I Imperative, object-oriented
I JIT compiled - CIL (bytecode) on the CLR (run-time)
I Garbage collected
I Unsafe code
I Parametric polymorphism with constraints (generics)
I First-class functions (λ-expressions, delegates)

Version 4.0 now has
I Covariance and contravariance for generics and delegates
I Keyword and optional parameters
I Late-binding via dynamic types (you are here)

Mono Project = .NET on Linux and Mac!
I Tell your friends

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 2 / 26

What is C#?

If C++ and Java had a baby. . . and it was adopted by Microsoft

Modern C-style language for the .NET runtime
I Imperative, object-oriented
I JIT compiled - CIL (bytecode) on the CLR (run-time)
I Garbage collected
I Unsafe code
I Parametric polymorphism with constraints (generics)
I First-class functions (λ-expressions, delegates)

Version 4.0 now has
I Covariance and contravariance for generics and delegates
I Keyword and optional parameters
I Late-binding via dynamic types (you are here)

Mono Project = .NET on Linux and Mac!
I Tell your friends

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 2 / 26

What is C#?

If C++ and Java had a baby. . . and it was adopted by Microsoft

Modern C-style language for the .NET runtime
I Imperative, object-oriented
I JIT compiled - CIL (bytecode) on the CLR (run-time)
I Garbage collected
I Unsafe code
I Parametric polymorphism with constraints (generics)
I First-class functions (λ-expressions, delegates)

Version 4.0 now has
I Covariance and contravariance for generics and delegates
I Keyword and optional parameters
I Late-binding via dynamic types (you are here)

Mono Project = .NET on Linux and Mac!
I Tell your friends

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 2 / 26

What is C#?

If C++ and Java had a baby. . . and it was adopted by Microsoft

Modern C-style language for the .NET runtime
I Imperative, object-oriented
I JIT compiled - CIL (bytecode) on the CLR (run-time)
I Garbage collected
I Unsafe code
I Parametric polymorphism with constraints (generics)
I First-class functions (λ-expressions, delegates)

Version 4.0 now has
I Covariance and contravariance for generics and delegates
I Keyword and optional parameters
I Late-binding via dynamic types (you are here)

Mono Project = .NET on Linux and Mac!
I Tell your friends

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 2 / 26

Contributions

Define a core fragment of C# 4.0 (Featherweight C#)

Translation FC#
4 → C#

CLR

Addition of dynamic type
I Subtyping transitivity is maintained (in your face, Siek and Taha)

Operational semantics for C#
CLR

I Prove type soundness
I Note: Unsafe code is not included in C#

CLR

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 3 / 26

Terminology

Term

Delegate
Value Type
Reference Type
Boxing
Unboxing
DLR

Meaning

Function pointer
Stack-based, passed by value
Heap-based, passed by reference
Value Type → Reference Type
Reference Type → Value Type
Dynamic Language Runtime
(efficient runtime dispatch)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 4 / 26

C# in 20 Seconds!

class Foomatic {

public int Bazar { get; set; } // Read/write property

public int Fooz(bool bar) {

return bar ? Bazar : Bazar * 2;

}

}

class Program {

static void Main(string[] args) {

var myFoo = new Foomatic (); // Construct a Foomatic

myFoo.Bazar = 10;

Console.WriteLine(myFoo.Bazar); // 10

Console.WriteLine(myFoo.Fooz(false)); // 20

myFoo.GetType ().GetProperty("Bazar")

.SetValue(myFoo , 50); // myFoo.Bazar = 50

Console.WriteLine(myFoo.Bazar); // 50

Console.WriteLine(typeof(Foomatic).GetMethod("Fooz")

.Invoke(myFoo , new object[] { false })); // 100

}

}

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 5 / 26

Motivation

Interact cleanly with COM components

var word = new Word.Application ();

word.Visible = true;

word.Documents.Add();

// ...

word.Selection.PasteSpecial(Link: true , DisplayAsIcon: true);

Access DLR objects

dynamic random = Python.CreateRuntime.UseFile("random.py");

random.shuffle(Enumerable.Range(0, 100).ToArray ());

Make C# a better language for web scripting (i.e. Silverlight)

dynamic doc = HtmlPage.Document;

doc.Title = "Hello World";

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 6 / 26

Motivation

Interact cleanly with COM components

var word = new Word.Application ();

word.Visible = true;

word.Documents.Add();

// ...

word.Selection.PasteSpecial(Link: true , DisplayAsIcon: true);

Access DLR objects

dynamic random = Python.CreateRuntime.UseFile("random.py");

random.shuffle(Enumerable.Range(0, 100).ToArray ());

Make C# a better language for web scripting (i.e. Silverlight)

dynamic doc = HtmlPage.Document;

doc.Title = "Hello World";

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 6 / 26

Motivation

Interact cleanly with COM components

var word = new Word.Application ();

word.Visible = true;

word.Documents.Add();

// ...

word.Selection.PasteSpecial(Link: true , DisplayAsIcon: true);

Access DLR objects

dynamic random = Python.CreateRuntime.UseFile("random.py");

random.shuffle(Enumerable.Range(0, 100).ToArray ());

Make C# a better language for web scripting (i.e. Silverlight)

dynamic doc = HtmlPage.Document;

doc.Title = "Hello World";

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 6 / 26

The dynamic Type

Implicitly convertible to any type

dynamic d = "Hello World"; // Succeeds , string <: dynamic

int i = d; // Fails at runtime , dynamic :> int

Method calls and property accesses are resolved at runtime

dynamic dynObject = someObject;

dynObject.Field = 5; // [...]. GetProperty ("Field ").SetValue(someObject , 5);

dynObject.Method (); // [...]. GetMethod (" Method ").Invoke(someObject);

Runtime type of dynamic subexpressions for method resolution

void M(byte b, int i) { ... }

void M(short s, int i) { ... }

short s = 42; dynamic d = 7; int i = 42; // Numeric literals are ints

M(s, 7); //(1) short , int

M(42, 7); //(2) byte , int

M(s, d); //(3) short , int

M(42, d); //(4) byte , int

M(i, 7); //(5) FAIL at compile -time - no (int , int) overload

M(i, d); //(6) FAIL at compile -time - no overload permits i

M(d, i); //(7) FAIL at runtime - no (int ,int) overload

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 7 / 26

The dynamic Type

Implicitly convertible to any type

dynamic d = "Hello World"; // Succeeds , string <: dynamic

int i = d; // Fails at runtime , dynamic :> int

Method calls and property accesses are resolved at runtime

dynamic dynObject = someObject;

dynObject.Field = 5; // [...]. GetProperty ("Field ").SetValue(someObject , 5);

dynObject.Method (); // [...]. GetMethod (" Method ").Invoke(someObject);

Runtime type of dynamic subexpressions for method resolution

void M(byte b, int i) { ... }

void M(short s, int i) { ... }

short s = 42; dynamic d = 7; int i = 42; // Numeric literals are ints

M(s, 7); //(1) short , int

M(42, 7); //(2) byte , int

M(s, d); //(3) short , int

M(42, d); //(4) byte , int

M(i, 7); //(5) FAIL at compile -time - no (int , int) overload

M(i, d); //(6) FAIL at compile -time - no overload permits i

M(d, i); //(7) FAIL at runtime - no (int ,int) overload

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 7 / 26

The dynamic Type

Implicitly convertible to any type

dynamic d = "Hello World"; // Succeeds , string <: dynamic

int i = d; // Fails at runtime , dynamic :> int

Method calls and property accesses are resolved at runtime

dynamic dynObject = someObject;

dynObject.Field = 5; // [...]. GetProperty ("Field ").SetValue(someObject , 5);

dynObject.Method (); // [...]. GetMethod (" Method ").Invoke(someObject);

Runtime type of dynamic subexpressions for method resolution

void M(byte b, int i) { ... }

void M(short s, int i) { ... }

short s = 42; dynamic d = 7; int i = 42; // Numeric literals are ints

M(s, 7); //(1) short , int

M(42, 7); //(2) byte , int

M(s, d); //(3) short , int

M(42, d); //(4) byte , int

M(i, 7); //(5) FAIL at compile -time - no (int , int) overload

M(i, d); //(6) FAIL at compile -time - no overload permits i

M(d, i); //(7) FAIL at runtime - no (int ,int) overload

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 7 / 26

Summary of Changes

C# now has type dynamic

Converted to object at runtime
I Treated specially by the compiler

A dynamic expression can be converted to any type
I Runtime type test inserted

Method calls with dynamic subexpressions deferred to runtime
I Compile-time types of non-dynamic subexpressions for resolution

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 8 / 26

Bidirectional Type System

Type checking

T x = e; // Ensure that e can be converted to type T

Type synthesis

var y = e; // Determine a type for e, and consequently y

Subtle differences...

Button x = null; // null can be converted to reference type Button

var y = null; // null does NOT synthesize a type!

Coercive subtyping
I If T is a subtype of S , generate a coercion C s.t. C (T) = S

Most formalizations use declarative typing and subtyping judgements

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 9 / 26

Bidirectional Type System

Type checking

T x = e; // Ensure that e can be converted to type T

Type synthesis

var y = e; // Determine a type for e, and consequently y

Subtle differences...

Button x = null; // null can be converted to reference type Button

var y = null; // null does NOT synthesize a type!

Coercive subtyping
I If T is a subtype of S , generate a coercion C s.t. C (T) = S

Most formalizations use declarative typing and subtyping judgements

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 9 / 26

Bidirectional Type System

Type checking

T x = e; // Ensure that e can be converted to type T

Type synthesis

var y = e; // Determine a type for e, and consequently y

Subtle differences...

Button x = null; // null can be converted to reference type Button

var y = null; // null does NOT synthesize a type!

Coercive subtyping
I If T is a subtype of S , generate a coercion C s.t. C (T) = S

Most formalizations use declarative typing and subtyping judgements

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 9 / 26

Bidirectional Type System

Type checking

T x = e; // Ensure that e can be converted to type T

Type synthesis

var y = e; // Determine a type for e, and consequently y

Subtle differences...

Button x = null; // null can be converted to reference type Button

var y = null; // null does NOT synthesize a type!

Coercive subtyping
I If T is a subtype of S , generate a coercion C s.t. C (T) = S

Most formalizations use declarative typing and subtyping judgements

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 9 / 26

Featherweight C#

Completely valid subset of C# 4.0

Classes, generics, overloading, inheritance, side-effects

Constructors treated as normal methods (.ctor)

Assume a unique entry point main

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 10 / 26

Featherweight C# Grammar

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 11 / 26

C#
CLR

Non-trivial conversions are explicit (subtyping = subclassing)

Method invocations are fully resolved

Explicit dynamic operations available

dynamic→ object (dynamic /∈ θ)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 12 / 26

C#
CLR Grammar

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 13 / 26

Notation

|C < int,dynamic> |∗ = C < int, object>

Γ B E ≤ τ
I In Γ, E can be converted to type τ

Γ B E ↑ τ
I In Γ, E synthesizes type τ

Γ ` E ↑+ τ
I Same as ↑, except null ↑+ object and int literals are recorded

ftype(σ, f)
I Get type of field f in type σ

dtype(D)(σ) = σ2 → σ3
I Get type of delegate D, substitute in types σ, end up with type σ2 → σ3

mtype(σ, m)
I Get method signatures named m reachable from type σ

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 14 / 26

C#
CLR Type Conversion

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 15 / 26

C#
CLR Type Synthesis (1/2)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 16 / 26

C#
CLR Type Synthesis (2/2)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 17 / 26

Translation to C#
CLR (Type Conversion)

Subclassing relation C1<σ1> : C2<σ2>

Implicit conversion

Explicit conversion (cast required)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 18 / 26

Translation to C#
CLR (Term Conversion 1/2)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 19 / 26

Translation to C#
CLR (Term Conversion 2/2)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 20 / 26

Translation to C#
CLR (Type Synthesis 1/2)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 21 / 26

Translation to C#
CLR (Type Synthesis 2/2)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 22 / 26

Big Picture

Any type can be implicitly converted to dynamic

dynamic converted to object during translation

Compile-time knowledge (i.e. int literals) retained

Appropriate run-time casts inserted (subclassing relation)

Overload resolution uses run-time and compile-time knowledge

Type preservation (hooray!)

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 23 / 26

Operational Semantics (1/2)

Payload component (r : σ) = run-time value, type
I Look up type from context if σ = dynamic
I Do type checking and synthesis

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 24 / 26

Operational Semantics (2/2)

It all comes down to the CLR. . .

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 25 / 26

Questions?

Michael Hansen (Indiana University) Adding Dynamic Types to C# November 3, 2010 26 / 26

