
Contracts Made Manifest

Michael Hansen

Indiana University

October 27, 2010

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 1 / 26

Contributions

Extension of Gronski and Flanagan 2007

Strengthen results by adding translation ψ (λH → λC)

Add dependent versions of λC and λH
I Highlight differences between picky and lax λC

Extend ψ and φ to dependent languages

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 2 / 26

Contracts: Latent vs. Manifest

Latent (λC)
I Purely dynamic
I Transparent to type system
I Two blame labels

F l - “My fault”
F l ′ - “Someone else’s fault”

Manifest (λH)
I Refinement types with casts
I Records most recent check in type
I Single blame label (l - “Invalid cast”)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 3 / 26

Contracts: Latent vs. Manifest

Latent (λC)
I Purely dynamic
I Transparent to type system
I Two blame labels

F l - “My fault”
F l ′ - “Someone else’s fault”

Manifest (λH)
I Refinement types with casts
I Records most recent check in type
I Single blame label (l - “Invalid cast”)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 3 / 26

Non-dependent λC

Simply-typed Lambda Calculus with latent contracts

Contracts only over base types

〈{x : B | t}〉l ,l ′

I t may only have x free

φ : λC → λH
I Preserves behavior
I Homomorphism

F Base type contracts → base type casts
F Function contracts → function casts

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 4 / 26

Non-dependent λC

Simply-typed Lambda Calculus with latent contracts

Contracts only over base types

〈{x : B | t}〉l ,l ′

I t may only have x free

φ : λC → λH
I Preserves behavior
I Homomorphism

F Base type contracts → base type casts
F Function contracts → function casts

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 4 / 26

Non-dependent λC Syntax and Evaluation

Syntax

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 5 / 26

Non-dependent λC Type Rules

Checks occur in empty context (∅)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 6 / 26

Non-dependent λH

Simply-typed Lambda Calculus with refinement types and casts

Only base types can be refined

Raw types
I x : B → {x : B | true}

〈S1 ⇒ S2〉l
I Cast from type S1 to S2
I Only one blame label

ψ : λH → λC
I Preserves behavior

tyc(k) and tyh(k) must agree on ”type skeleton”
I if tyc(k) = B1 → B2 then tyh(k) = {x : B1 | s1} → {x : B2 | s2}

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 7 / 26

Non-dependent λH

Simply-typed Lambda Calculus with refinement types and casts

Only base types can be refined

Raw types
I x : B → {x : B | true}

〈S1 ⇒ S2〉l
I Cast from type S1 to S2
I Only one blame label

ψ : λH → λC
I Preserves behavior

tyc(k) and tyh(k) must agree on ”type skeleton”
I if tyc(k) = B1 → B2 then tyh(k) = {x : B1 | s1} → {x : B2 | s2}

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 7 / 26

Non-dependent λH Syntax and Evaluation

Erase

Raw

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 8 / 26

Non-dependent λH Type Rules

Again, checks occur in empty context (∅)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 9 / 26

Non-dependent Translations

Interesting parts deal with casts and contracts

Everything else is translated homomorphically

φ : λC → λH
I Mimic two blame labels -
φ(〈c〉l,l′) = λx : dce. 〈φ(c)⇒ dce〉l′(〈dce ⇒ φ(c)〉l)

I Descend into contract predicates - φ({x : B | t}) = {x : B | φ(t)}
I Split function contracts - φ(c1 7−→ c2) = φ(c1)→ φ(c2)

ψ : λH → λC
I Duplication of blame label - ψ(〈S1 ⇒ S2〉l) = 〈ψ(S1,S2)〉l,l
I Use cast target predicate -
ψ({x : B | s1}, {x : B | s2}) = {x : B | ψ(s2)}

I Translate domain contravariantly -
ψ(S11 → S12,S21 → S22) = ψ(S21,S11) 7−→ ψ(S12,S22)

Both φ and ψ preserve behavior in a strong sense

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 10 / 26

Non-dependent Translations

Interesting parts deal with casts and contracts

Everything else is translated homomorphically

φ : λC → λH
I Mimic two blame labels -
φ(〈c〉l,l′) = λx : dce. 〈φ(c)⇒ dce〉l′(〈dce ⇒ φ(c)〉l)

I Descend into contract predicates - φ({x : B | t}) = {x : B | φ(t)}
I Split function contracts - φ(c1 7−→ c2) = φ(c1)→ φ(c2)

ψ : λH → λC
I Duplication of blame label - ψ(〈S1 ⇒ S2〉l) = 〈ψ(S1,S2)〉l,l
I Use cast target predicate -
ψ({x : B | s1}, {x : B | s2}) = {x : B | ψ(s2)}

I Translate domain contravariantly -
ψ(S11 → S12,S21 → S22) = ψ(S21,S11) 7−→ ψ(S12,S22)

Both φ and ψ preserve behavior in a strong sense

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 10 / 26

Non-dependent Translations

Interesting parts deal with casts and contracts

Everything else is translated homomorphically

φ : λC → λH
I Mimic two blame labels -
φ(〈c〉l,l′) = λx : dce. 〈φ(c)⇒ dce〉l′(〈dce ⇒ φ(c)〉l)

I Descend into contract predicates - φ({x : B | t}) = {x : B | φ(t)}
I Split function contracts - φ(c1 7−→ c2) = φ(c1)→ φ(c2)

ψ : λH → λC
I Duplication of blame label - ψ(〈S1 ⇒ S2〉l) = 〈ψ(S1,S2)〉l,l
I Use cast target predicate -
ψ({x : B | s1}, {x : B | s2}) = {x : B | ψ(s2)}

I Translate domain contravariantly -
ψ(S11 → S12,S21 → S22) = ψ(S21,S11) 7−→ ψ(S12,S22)

Both φ and ψ preserve behavior in a strong sense

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 10 / 26

Non-dependent Translations

Interesting parts deal with casts and contracts

Everything else is translated homomorphically

φ : λC → λH
I Mimic two blame labels -
φ(〈c〉l,l′) = λx : dce. 〈φ(c)⇒ dce〉l′(〈dce ⇒ φ(c)〉l)

I Descend into contract predicates - φ({x : B | t}) = {x : B | φ(t)}
I Split function contracts - φ(c1 7−→ c2) = φ(c1)→ φ(c2)

ψ : λH → λC
I Duplication of blame label - ψ(〈S1 ⇒ S2〉l) = 〈ψ(S1,S2)〉l,l
I Use cast target predicate -
ψ({x : B | s1}, {x : B | s2}) = {x : B | ψ(s2)}

I Translate domain contravariantly -
ψ(S11 → S12,S21 → S22) = ψ(S21,S11) 7−→ ψ(S12,S22)

Both φ and ψ preserve behavior in a strong sense

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 10 / 26

All Is Well?

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 11 / 26

Being Picky

Problem: picky λC can blame more than lax λC

Example (Abusive Contracts)

I = {x : Int | true} N = {x : Int | nonzero x}

c1 7−→ c2 = f : (N 7−→ I) 7−→ {z : Int | f 0 = 0}

Using Lax λC

((〈c1 7−→ c2〉l ,l
′
λf : Int→ Int . 0) λx : Int . x) 5→∗c 5

Translation to λH - φ(f)
I Domain contract of f is effectively rechecked (due to cast)
I Results in blame

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 12 / 26

Being Picky

Problem: picky λC can blame more than lax λC

Example (Abusive Contracts)

I = {x : Int | true} N = {x : Int | nonzero x}

c1 7−→ c2 = f : (N 7−→ I) 7−→ {z : Int | f 0 = 0}

Using Lax λC

((〈c1 7−→ c2〉l ,l
′
λf : Int→ Int . 0) λx : Int . x) 5→∗c 5

Translation to λH - φ(f)
I Domain contract of f is effectively rechecked (due to cast)
I Results in blame

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 12 / 26

Being Picky

Problem: picky λC can blame more than lax λC

Example (Abusive Contracts)

I = {x : Int | true} N = {x : Int | nonzero x}

c1 7−→ c2 = f : (N 7−→ I) 7−→ {z : Int | f 0 = 0}

Using Lax λC

((〈c1 7−→ c2〉l ,l
′
λf : Int→ Int . 0) λx : Int . x) 5→∗c 5

Translation to λH - φ(f)
I Domain contract of f is effectively rechecked (due to cast)
I Results in blame

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 12 / 26

Being Picky

Problem: picky λC can blame more than lax λC

Example (Abusive Contracts)

I = {x : Int | true} N = {x : Int | nonzero x}

c1 7−→ c2 = f : (N 7−→ I) 7−→ {z : Int | f 0 = 0}

Using Lax λC

((〈c1 7−→ c2〉l ,l
′
λf : Int→ Int . 0) λx : Int . x) 5→∗c 5

Translation to λH - φ(f)
I Domain contract of f is effectively rechecked (due to cast)
I Results in blame

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 12 / 26

The Axis of Blame

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 13 / 26

Dependent λC Changes

Not much – contracts and types barely interact

Track blame labels throughout contract well-formedness check

Choose picky or lax decomposition

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 14 / 26

Dependent λH Changes

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 15 / 26

Example 1 - lax λC → λH (1/2)

Example

c11 7−→ c12 = f : (x : {x : Int | true} 7−→ {y : Int | nonzero y})

c2 = {z : Int | f 0 = 0}

(〈(f : c11 7−→ c12) 7−→ c2〉l ,l
′
(λf .0)) (λx .0)

〈c2{f := λx .0}〉l ,l ′((λf .0) (〈c11 7−→ c12〉l
′,l(λx .0)))

〈c2{f := λx .0}〉l ,l ′0
(λx .0) 0 = 0

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 16 / 26

Example 1 - lax λC → λH (2/2)

Example

c11 7−→ c12 = f : (x : {x : Int | true} 7−→ {y : Int | nonzero y})

c2 = {z : Int | f 0 = 0}

φ(f : (c11 7−→ c12) 7−→ c2) = f : φ(x : c11 7−→ c12)→ φ(c2)

S1 = x : {x : Int | true} → {y : Int | nonzero y}
dS1e = dInte → dInte
f : S1 → (λz : dInte.((〈S1 ⇒ dS1e〉)〈dS1e ⇒ S1〉 f)) 0 = 0

When f = λx .0, the co-domain cast to nonzero fails

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 17 / 26

Example 2 - lax λC → λH (1/2)

Example

c11 7−→ c12 = f : (x : {x : Int | nonzero x} 7−→ {y : Int | true})

c2 = {z : Int | f 0 = 0}

(〈(f : c11 7−→ c12) 7−→ c2〉l ,l
′
(λf .0)) (λx .0)

〈c2{f := λx .0}〉l ,l ′((λf .0) (〈c11 7−→ c12〉l
′,l(λx .0)))

〈c2{f := λx .0}〉l ,l ′0
(λx .0) 0 = 0

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 18 / 26

Example 2 - lax λC → λH (2/2)

Example

c11 7−→ c12 = f : (x : {x : Int | nonzero x} 7−→ {y : Int | true})

c2 = {z : Int | f 0 = 0}

φ(f : (c11 7−→ c12) 7−→ c2) = f : φ(x : c11 7−→ c12)→ φ(c2)

S1 = x : {x : Int | nonzero x} → {y : Int | true}
dS1e = dInte → dInte
f : S1 → (λz : dInte.((〈S1 ⇒ dS1e〉)〈dS1e ⇒ S1〉 f)) 0 = 0

When f = λx .0, the domain cast to nonzero fails

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 19 / 26

Example 3 - λH → picky λC (1/2)

Example

S1 = f : (x : dInte → {y : Int | nonzero y})→ dInte

S2 = f : (x : dInte → dInte)→ {z : Int | f 0 = 0}

S11 = dInte → {y : Int | nonzero y} S12 = dInte
w = (λf : S11 → S12 . 0) w ′ = (λx : dInte . 0)

S21 = dInte → dInte S22 = {z : Int | f 0 = 0}
(〈S1 ⇒ S2〉w) w ′ = 〈S12 ⇒ S22〉 (w (〈S21 ⇒ S11〉 w ′))

I Co-domain of S11 not enforced!

S22{f := w ′} →∗h ((w ′ 0) = 0) →∗h true

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 20 / 26

Example 3 - λH → picky λC (2/2)

Example

S1 = f : (x : dInte → {y : Int | nonzero y})→ dInte

S2 = f : (x : dInte → dInte)→ {z : Int | f 0 = 0}

S11 = dInte → {y : Int | nonzero y} S22 = {z : Int | f 0 = 0}
c = ψ(S1, S2) = ψ(S11 → S12, S21 → S22)

f : ψ(S21, S11) 7−→ ψ(S12{f := 〈S21 ⇒ S11〉 f },S22)

c1 = ψ(S11) c2 = ψ(S22)

(〈c1 7−→ c2〉(λf : Int . 0)) (λx : Int . 0)

E DECOMP PICKY: c2{f := 〈c1〉v ′} where v ′ = (λx : Int . 0)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 21 / 26

Big Picture

φ and ψ correspond exactly in the non-dependent case

First-order dependence does not change this
I Contracts can’t be abusive

Higher-order dependence
I φ from lax λC can blame more
I ψ to picky λC can blame more

Caveats
I No recursion
I No side-effects (other than blame)
I No contracts or refinements over functions
I Constraints on types

F tyh(k) <: dtyc(k)e
F sqrt must be subtype of dFloat → Floate
F Domain must be defined for all Kfloat!

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 22 / 26

Dependent Translation into λH (1/2)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 23 / 26

Dependent Translation into λH (2/2)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 24 / 26

Dependent Translation into λC (ψ)

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 25 / 26

Questions?

Michael Hansen (Indiana University) Contracts Made Manifest October 27, 2010 26 / 26

