
What Makes Code Hard to Understand?

Evidence from Output Prediction

Michael Hansen (mihansen@indiana.edu)
School of Informatics and Computing, 2719 E. 10th Street

Bloomington, IN 47408 USA

Robert L. Goldstone (rgoldsto@indiana.edu)
Dept. of Psychological and Brain Sciences, 1101 E. 10th Street

Bloomington, IN 47405 USA

Andrew Lumsdaine (lums@indiana.edu)
School of Informatics and Computing, 2719 E. 10th Street

Bloomington, IN 47408 USA

September 26, 2014

1

Abstract

What factors impact the comprehensibility of code? Intuition and previous research suggests that
simpler, expectation-congruent programs should take less time to understand and be less prone to errors.
We present an experiment in which participants with varying levels of programming experience predict
the printed output of ten short Python programs. We use subtle differences between program versions
to demonstrate that seemingly insignificant notational changes can have profound effects on prediction
correctness, response times, and keystrokes. Our results show that experience increases performance in most
cases, but may hurt performance significantly when underlying assumptions about related code statements
are violated. Additionally, we find that response correctness can be predicted using a combination of
performance metrics and participant demographics.

2

1 Introduction

Software complexity is “a measure of resources expended by a system [human or other] while interacting
with a piece of software to perform a given task.”

- Basili, 1980

The design, creation and interpretation of computer programs are some of the most cognitively challeng-
ing tasks that humans perform. Understanding the factors that impact the cognitive complexity of code
is important for both applied and theoretical reasoning. Practically, an enormous amount of time is spent
developing programs, and even more time is spent debugging them. If we can identify factors that expedite
these activities, a large amount of time and money can be saved. Theoretically, programming is an excellent
task for studying representation, working memory, planning, and problem solving in the real world.

A program is an abstract specification for a set of operations, but its code exists in a concrete notational
system made to be read and written by humans. With some exceptions, we intuitively expect programs
whose code is shorter and simpler to be easier to understand, especially for more experienced programmers.
Given the expressive power of most programming languages, we also expect the exceptions to be fairly
nuanced; even operationally simple programs may be difficult when misleading variable names are used or
implicit expectations are violated [30].

What are the relationships between a program’s source code, the programmer interpreting it, and how
difficult the program is to understand? To start, we must quantify each of these components, including what
it means to understand a program. In this paper, we use an output prediction task to quantify understanding
– we say a programmer understands a program if she can accurately predict its printed output. Using a set of
five performance metrics, we measure a programmer’s prediction accuracy, response time, and individual
keystrokes. To quantify features of a program’s source code, we employ severak commonly-used code
complexity metrics, such as lines of code, cyclomatic complexity, and Halstead effort. These metrics are
often used to predict how error prone or difficult to understand a piece of code is. Lastly, we quantify aspects
of the programmers themselves using self-reported demographics, such as programming experience and
age. Our experiment explores the relationships between these demographics, prediction performance, and
code complexity.

The Experiment and Research Questions

We present a web-based experiment in which participants with a wide variety of Python and overall
programming experience predicted the output of 10 small Python programs. Most of the program texts were
less than 20 lines long and had fewer than 8 linearly independent paths (as measured by cyclomatic
complexity [21]). We used ten different program kinds, each of which had two or three versions with subtle
differences. For each participant and program, we collected five different performance measures:

1. Output distance - the normalized edit distance between the correct answer and the participant’s
output prediction.

2. Duration - the amount of time taken to predict a single program’s output (log scale).
3. Keystroke coefficient - the number of keystrokes a participant typed divided by the number of

keystrokes needed to type the correct output.

3

4. Response proportion - the amount of time between the first and last keystroke divided by the total
trial duration.

5. Response corrections - the number of times the participant’s output prediction decreased in size (i.e.,
backtracks or corrections).

The different versions of our programs were designed to test three underlying research questions. First,
“How are programmers affected by programs that violate their expectations, and does this vary with expertise?”
Previous research suggests that expectation-violating programs should take longer to process and be more
error-prone than expectation-congruent programs. There are reasons to expect this benefit for
expectation-congruency to interact with experience in opposing ways. Experienced programmers may show
a larger influence of expectations due to prolonged training, but they may also have more untapped
cognitive resources available for monitoring expectation violations. In fact, given the large percentage of
programming time that involves debugging (it is a common saying that 90% of development time is spent
debugging 10% of the code), experienced programmers may have developed dedicated monitors for certain
kinds of expectation-violating code.
The second question is: “How are programmers influenced by physical characteristics of notation, and does this vary
with expertise?” Programmers often feel like the physical properties of notation have only a minor influence
on their interpretation process. When in a hurry, they frequently dispense with recommended variable
naming, indentation, and formatting as superficial and inconsequential. However, in other formal reasoning
domains such as mathematics, apparently superficial formatting influences like physical spacing between
operators has been shown to have a profound impact on understanding [16]. Furthermore, there is an open
question as to whether experienced or inexperienced programmers are more influenced by similar physical
aspects of code notation. Experienced programmers may show less influence of these “superficial” aspects
because they are responding to the deep structure of the code. By contrast, in math reasoning, experienced
individuals sometimes show more influence of notational properties of the symbols, apparently because
they use perception-action shortcuts involving these properties in order to attain efficiency.
Our final question is deceptively simple: “Can task performance be predicted by code complexity metrics and
programmer demographics?” It is common practice in some organizations to use “code complexity” metrics,
such as number of lines and control flow statements, to identify potentially error-prone code that is hard to
comprehend [11]. Well-defined metrics, including lines of code and cyclomatic complexity [21], have
recommended limits for components of large software projects [22]. One failing of these metrics, however, is
that they do not take a programmer’s experience into account. While experience does not necessarily equal
expertise, a veteran programmer and a novice are likely to face different challenges when comprehending
the same code. Although our programs and task are fairly simple, it is reasonable to expect that (1) task
performance be moderately correlated with code complexity metrics, and (2) performance predictions
improve when programmer demographics are also considered.

Paper Outline

Section 2 begins by providing the necessary background on research in the psychology of programming.
Next, Section 3 provides import details about our experiment (see Appendix A for the source code to all
programs). Results are presented in Section 4, broken down by performance/complexity metrics, program

4

versions, and participant expertise. Section 5 discusses the results from the previous section, and relates
them to our three research questions. Finally, Section 6 concludes and describes our plans for future work.

2 Background and Related Work

One feature which all of these [theoretical] approaches have in common is that they begin with certain
characteristics of the software and attempt to determine what effect they might have on the difficulty of the
various programmer tasks.

A more useful approach would be first to analyze the processes involved in programmer tasks, as well as
the parameters which govern the effort involved in those processes. From this point one can deduce, or at
least make informed guesses, about which code characteristics will affect those parameters.

- Cant et. al, 1995

Psychologists have been studying programmers for at least forty years. Early research focused on
correlations between task performance and human/language factors, such as how the presence of code
comments impacts scores on a program comprehension questionnaire. More recent research has revolved
around the cognitive processes underlying program comprehension. Effects of expertise, task, and available
tools on program understanding have been found [7].
Studies with experienced programmers have revealed conventions, or “rules of discourse,” that can have a
profound impact (sometimes negative) on expert program comprehension [30]. Violations of these rules are
thought to contribute directly to how difficult a program is to understand. Much like violating the “rules” of
verbal discourse can make a conversation difficult (e.g., awkward phrasing or unconventional uses of
words), Soloway and Ehrlich argued that violating discourse rules in code strains communication between
programmers. Interestingly, this strained communication affects expert programmers more than novices,
suggesting that programming expertise is partially due to learned semantic conventions.
In another psychology of programming study, Soloway and Detienné asked programmers to recall
programs that subtly violated particular coding conventions, such as naming the outermost for loop index j
instead of i. Expert programmers consistently recalled the loop index as the more canonical i, suggesting
that storage of code in long-term memory is mediated by a template-like structure [6]. deGroot and Gobet
have extended standard short-term memory chunking theory with templates, long-term memory structures
with “slots” that allow for rapid memorization of domain items [5]. This extension, however, has only been
applied to the domain of chess, where templates are predicted to correspond to common chess piece
positions. For programmers, the precise correspondence between templates and code is currently unknown.
Templates may exist for code directly (e.g., for loops, if statements), or may correspond to higher-level
attributes of the code, such as data-flow patterns or variable roles [26].
Our present research focuses on programs much less complicated than those the average professional
programmer typically encounters on a daily basis. The demands of our task are still high, however, because
participants must predict precise program output. In this way, it is similar to debugging a short snippet of a
larger program. Code studies often take the form of a code review, where programmers must locate errors or
answer comprehension questions after the fact (e.g., does the program define a Professor class? [1]). Our task
differs by asking programmers to mentally simulate code without necessarily understanding its purpose. In

5

most programs, we intentionally use meaningless identifier names where appropriate (variables a, b, etc.) to
avoid influencing the programmer’s mental model.
Similar research has asked beginning (CS1) programming students to read and write code with simple goals,
such as the Rainfall Problem [17]. To solve it, students must write a program that averages a list of numbers
(rainfall amounts), where the list is terminated with a specific value – e.g., a negative number or 999999. CS1
students perform poorly on the Rainfall Problem across institutions around the world, inspiring researchers
to seek better teaching methods. Our work includes many Python novices with a year or less of experience
(94 out of 162 participants), so our results may also contribute to ongoing research in early programming
education.

2.1 Code Complexity Metrics

Code complexity has traditionally been measured using structural or textual features of the code (sometimes
called the representational complexity [2]). These complexity metrics are often used as proxies for the
maintainability or error-proneness of a piece of code [15]. They are quick and easy to compute, allowing
them to be used as tools for identifying potentially problematic code in large software projects. There are
drawbacks to using some of these metrics, however, such as their strong statistical correlation with code
size [12]. Because of this correlation, it is often difficult to quantify differences between large codebases are
that truly complex and ones that are simply repetitive, though metrics inspired by Kolomogorov complexity
may overcome this problem [31].
Traditional complexity metrics do not claim to directly measure how difficult a program is to understand – its
cognitive complexity [2]. However, some researchers have claimed they measure something related. It has
been argued that having to mentally juggle too many lines of code, branches, or operators and operands
strains the capacity limitations of programmers’ short-term memories [20]. Therefore, metrics such as
number of lines, cyclomatic complexity, and Halstead effort can be used as a proxy for cognitive complexity.
While it has been found that short-term memory capacity is indeed limited and approximately the same
across individuals, the size of individual items in short-term memory (called chunks) varies greatly [4]. This
means we cannot infer that a given piece of code will “overflow” a programmer’s short-term memory
simply because we cannot assume that a textual measure captures the size of their short-term memory
chunks. More complete cognitive models have been proposed to capture the relationships between code text
and program understanding, such as the Stores Model [8] and the Cognitive Complexity Model [2]. No
quantitative implementation of these models currently exists, however, so their ability to predict
performance in a particular programming task (such as output prediction) remains unknown.

6

3 Methodology

One hundred and sixty-two participants were recruited from the Bloomington, IN area (29 participants), on
Amazon’s Mechanical Turk (130 participants), and via e-mail (3 participants). The local participants in
Bloomington were paid $10 each, and performed the experiment in front of an eye-tracker (see Section 6.1
regarding future work). Mechanical Turk participants were paid $0.75, and performed the experiment over
the Internet via a web browser. All participants were screened for a minimum competency in Python by
passing a basic language test. The mean participant age was 28.4 years, with an average of 2.0 years of
self-reported Python experience and 6.9 years of programming experience overall. Most of the participants
had a college degree (69.8%), and were current or former Computer Science majors (52.5%). Figure 1 has a
more detailed breakdown of the participant demographics.

Figure 1: Demographics of all 162 participants.

The experiment consisted of a pre-test survey with questions about demographics and experience, ten trials
(one program each), and a post-test survey assessing confidence and requesting feedback. The pre-test
survey gathered information about the participant’s age, gender, education, Python experience, and overall
programming experience. Participants were then asked to predict the printed output of ten short Python
programs, one version randomly chosen from each of ten program bases (Figure 2). The presentation order
and names of the programs were randomized, and all answers were final (Figure 3). No feedback about
correctness was provided and, although every program produced error-free output, participants were not
informed of this fact beforehand. The post-test survey gauged a participant’s confidence in their answers
and the perceived difficulty of the task overall.
We collected a total of 1,620 trials from 162 participants starting November 20, 2012 and ending January 19,
2013. Trial responses were manually screened, and a total of 35 trials were excluded based on the response

7

Figure 2: Sample trial from the experiment (between inline). Participants were asked to predict the exact output of ten Python
programs.

text 1. Trial completion times ranged from 12 to 518 seconds. Outliers beyond three standard deviations of
the mean (in log space) were discarded (10 of 1,585 trials), leaving a total of 1,575 trials to be analyzed.
Participants had a time limit of 45 minutes to complete the entire experiment (10 trials + surveys), but were
not constrained to complete individual trials in any specific amount of time.

Figure 3: Home screen for the experiment. Each program was assigned a random name.

There were a total of twenty-five Python programs in our experiment belonging to ten different program
bases. These programs were designed to be understandable by a wide audience, and therefore did not touch
on Python features outside of a first or second introductory programming course (no lambda expressions,

1Excluded trial responses were things like “error” or an English description of the code. While these responses may be interesting in
their own right, we do not consider them relevant to the intended task.

8

generators, etc.). The programs ranged in size from 3 to 24 lines of code, and did not make use of any
standard or third-party libraries. Code metrics for each program were calculated using the open source
PyMetrics library [3] (see Table 4 in the appendix). Most programs fell well within recommended complexity
metric ranges for being “understandable” [22].

3.1 Mechanical Turk

One hundred and thirty participants from Mechanical Turk (MT) completed the experiment online and
received $0.75 each . All MT workers were required to pass a Python pre-test, and could only participate in
the experiment once. Although participants were not paid based on performance, some precautions were
taken to ensure the task was completed properly. All code was displayed as an image, making it difficult to
copy/paste the code into a Python interpreter for quick answers. Responses were manually screened, and
any restarted trials 2 or unfinished experiments were discarded (18 out 1,620 trials overall). For reference,
the website and associated code for the experiment is freely available online at
https://github.com/synesthesiam/eyecode-web.

3.2 Python Programs

Although individual participants were tested on only ten programs, there were a total of twenty-five Python
programs in the experiment. We had ten program bases, from which one of 2-3 versions was randomly
selected and given to a participant. Appendix A contains the complete listing of all program source code
and printed output. While the programs were small and relatively simple, they were designed to test
specific effects of physical notation and expectation violations.
The between, counting, funcall, order, rectangle, and whitespace programs were designed to test
different choices in physical notation. For these program bases, all versions produced identical output. We
expected differences in notation to result in differences in performance, specifically in the amount of time
taken to complete the trial. For example, the order programs had 3 functions that were defined and called
either in the same order (inorder) or a different order (shuffled). We expected faster responses in the same
order case because the congruence would likely aid visual search..
The initvar, overload, partition, and scope programs were designed to violate the programmer’s
expectations. Our expectations were that experienced programmers would be more prone to specific
mistakes. The scope programs, for instance, contained several functions that did not modify their
arguments or return any value (an explicit violation of Soloway’s maxim “don’t include code that won’t be
used” [30]). We hypothesized that less experienced programmers would interpret the programs literally,
giving them an advantage when the code and common expectations diverged. Similarly, two out of three
versions of initvar contained an off-by-one error in a summation – something an experienced programmer
may miss if they aren’t careful.

2A trial could be restarted by manipulating the web browser’s address field. Our server allowed participants who restarted trials to
complete the experiment, but those individual trials were excluded from analysis.

9

https://github.com/synesthesiam/eyecode-web

3.2.1 Complexity Metrics

We quantified differences between programs using six code complexity metrics (see Table 1). These metrics
were computed on the source code with features such as number of lines, independent code paths, and
operator / operand counts using the open source PyMetrics library [3]. A complete listing of programs and
their associated complexity metrics is available in Table 4 in the Appendix. While these metrics alone do not
strongly predict performance in our task (i.e., longer programs are not necessarily more difficult), they are
expected to become more useful when combined with additional information about the programmer (e.g.,
experience, age). Section 4.1.6 explores this in more detail.
One of the most common complexity metrics, lines of code, is computed by simply counting up lines in the
program’s source code (including blank lines, in our case). Counting lines is fast, and the result can be used
as a rough indication of a program’s overall complexity; much like using page count gives a sense of how
complex a book’s plot may be. Lines and pages, of course, are not a reliable proxy for how difficult a book or
a program is to understand. Hundreds of lines of boilerplate C code, and an extremely clever twenty-line
Haskell program will be assigned high and low complexity rankings respectively if lines of code is the only
metric.
Another common metric, cyclomatic complexity, is computed by counting up control flow statements [21]
(e.g., if, for, while). Cyclomatic complexity measures the number of linearly independent paths through a
program, and is useful when determining the number of tests needed to achieve proper code coverage.
More often, however, this metric is used to predict the number of defects in a function or entire program [14].
Cyclomatic complexity has also been found to be highly correlated with lines of code [11]. This is not
entirely unexpected, however. It is difficult (or at least uncommon) to write large programs with very few
control flow statements.
In 1977, Maurice Halstead introduced several complexity metrics, collectively referred to as the Halstead
metrics [18]. These metrics depend on dividing the syntax tokens of a programming language into operators
and operands. Given this division, the following quantities can be computed for a program or sub-module:
(N1) the total number of operators, (N2) the total number of operands, (η1) the number of distinct operators,
and (η2) the number of distinct operands. Halstead proposed the following metrics based on these
quantities:

• Difficulty: (η1 × N2)/(2× η2)

• Volume: V = (N1 + N2)× log2(η1 + η2)

• Effort: E = V × D

Halstead predicted that the volume (V) and effort (E) values for a program would be related to the time
needed to produce and review the program. Our preliminary analysis found that these two quantities were
almost perfectly correlated for all programs, so we focus on Halstead effort only as a measure of complexity.
In addition to being correlated with lines of code, Halstead effort has also been found to be linearly
correlated with source code indentation [19].
Because our task is focused on output prediction, we include two additional metrics derived from the
output of each program. The number of output characters and output lines are simply the number of
individual characters and lines in the true printed output. While these are not directly observable in the
source code, they can have an important effect on performance. A program with more characters in its

10

Metric Definition

Lines of Code Number of lines in the code (includes blank lines)
Cyclomatic Complexity Number of linearly independent paths through the program
Halstead Volume Program length (N) times the log of the program’s vocabulary (n).
Halstead Effort Effort required to write or understand a program (D×V)
Output Characters Number of characters in the program’s printed output
Output Lines Number of lines in the program’s printed output

Table 1: Code complexity metrics computed for each program.

output, for example, may be observed to have more response corrections simply because the chance of
typing mistake is higher while responding, not because the program is more difficult to understand.

3.3 Performance Metrics

Participants’ performance was quantified with a set of five performance metrics (Table 2). To help explain
the details of each metric, consider the sample trial presented in Figure 4. In this trial, the participant is
presented with the Python program print "1" + "2". After the initial reading period (i.e., before any
keystrokes), the participant types a “3”. With that first keystroke, the response period has begun. Continuing
with the trial, the participant realizes their mistake (+ means concatenate in Python when the arguments are
strings), and modifies their response before submitting by pressing the delete key (DEL) followed by a “1”
and then a “2”. The participant then submits their response, concluding the trial.

Figure 4: Anatomy of an individual trial.

The first performance metric we computed was the output distance. This is just the string edit distance [27]
between the participant’s response and the actual program output, normalized by the length of the longest
string. An output distance of 0 means that the participant’s response is a perfect match, while a distance of 1
means that all response characters should have been different. For the sample trial in Figure 4, the output
distance would be 0 (a perfect score). We ignored whitespace, newlines, and certain formatting characters

11

Metric Definition Range/Units

Output distance Normalized edit distance between correct answer and par-
ticipant’s output prediction

[0, 1]

Duration Time taken to complete a trial (reading and response) [0,+∞] log ms
Keystroke coefficient Number of participant keystrokes divided by minimal re-

quired keystrokes for correct answer
[0,+∞]

Response proportion Amount of time between first and last keystroke divided by
trial duration

[0, 1]

Response corrections Number of times the participant’s output decreased in size
(backtracks)

[0,+∞] corrections

Table 2: Performance metrics computed for each trial.

(square brackets, commas, quotes) when computing the output distance. This was intended to broaden the
definition of a “correct” answer by ignoring characters that are only artifacts of the printing process. Out of
the 1,575 trials, there were a total of 1,178 trials with correct answers (this number only drops to 1,001 if we
require perfect whitespace and formatting characters).
The duration of each trial was recorded from start (participant is presented with the program) to finish
(participant submitted their response) by the web server. This value was used as the denominator in the
response proportion metric (described below). For outlier removal and when computing statistics, we used
log duration. Especially within each program base, log duration distributions were approximately normal
(Figure 6).
A keystroke coefficient was computed by dividing the total number of keystrokes a participant typed
(including deletions) by the minimal number of keystrokes required to produce a perfect response. In the
sample trial described above, the participant typed a total of four characters (3, DEL, 1, 2) when only two
were required (1, 2). This trial, therefore, would have a keystroke coefficient of 4/2 = 2. A keystroke
coefficient less than 1 could be achieved in one of two ways: (1) by providing an incorrect response that was
shorter than required, or (2) by copying and pasting text. We explore both of these possibilities in Section 4.
The response proportion of a trial is the amount of time between the first and last participant keystroke
divided by the trial duration. Conceptually, this represents the proportion of a trial that was spent doing
reading and responding rather than just reading (at the start) or just reviewing (at the end). In the sample
trial, the response proportion would be approximately 0.5. Though there is a relationship between this
metric and keystroke coefficient, it captures something different: intermediary results. Even if a participant
types the exact number of necessary keystrokes (a coefficient of 1), their response proportion could be low
(mostly reading, followed by a quick response) or high (little reading, slow construction of a response).
A response correction occurs when the participant’s current response size decreases for the first time since
the last increase. If we were to plot the number of characters in the participant’s response over time, the
number of response corrections would correspond to the number of troughs or downward slopes in the
graph. While this metric will clearly be correlated with keystroke coefficient, it distinguishes between
insertions and deletions. The sample trial only has a single response correction, and this would still be the
case even if the participant had typed “33” instead of “3” initially.

12

3.4 Statistics

When comparing performance metric distributions, we use non-parametric statistical methods. Many of
these metric distributions do not fit the assumptions of traditional parametric methods (e.g., ANOVA, t-test),
so we use their non-parametric analogues. The Kruskal-Wallis H test serves our analogue of the ANOVA,
with pairwise follow-up tests being done with the Mann-Whitney U test – our analogue of the t-test [29].
These pairwise U tests include a Bonferroni correction with a significance level (α) of 0.05. We calculate
effect sizes for U tests using the rank-biserial correlation r, a metric whose range is [−1, 1] with 0 meaning
no correlation [32]. As a rule of thumb, we take absolute values of r greater than or equal to 0.2 to indicate a
meaningful relationship (and |r| > 0.4 as a strong relationship). To quantify correlations between two series,
we use the Spearman r correlation with a significance level (α) of 0.05. We infer weak, moderate, strong, and
very strong relationships when |r| is greater than or equal to 0.2, 0.3, 0.4, and 0.7 respectively.
For models fits, we use three standard approaches. When testing how well a fixed set of predictors predict a
response variable, we use either an ordinary least squares (OLS) or logistic fit, depending on whether or not
the response variable is binary. In both cases, a significance level of 0.05 is used to ascertain the significance
of predictor coefficients. In Section 4.1.6, a LASSO-LARS technique with cross-validation is used to find a
“best” fitting model across a set of many predictor variables [10]. This technique avoids significance-testing
problems associated with alternative model selection methods, such as stepwise refinement and AIC/BIC
ranking. Instead of using p-values, the coefficients of predictors are “shrunk” towards zero if they are not
useful when predicting the response variable.

13

4 Results

The results of our experiment are described in detail below. We start by observing the distribution of each
performance metric, grouped by program base (Section 4.1). Next, we analyze the results by individual
program 4.2. Finally, we consider how performance varies between correct and incorrect trials, as well as
between expert and non-expert participants (Section 4.3).

4.1 By Performance Metric

We begin by discussing results at a high level across all trials. For each performance metric, we group results
by program base and look for significant patterns. Some of these patterns are intuitively obvious, such as
programs with more lines taking longer to read and respond to (Section 4.1.2). Other patterns are not so
obvious, like finding trials where participants managed to get the right answer without typing all the
necessary characters (Section 4.1.3)!
Below, we analyze each performance metric separately. Section 4.1.1 looks at the normalized output distance
between trial responses and the correct response. Section 4.1.2 examines trial duration in log space. Our
three keystroke metrics, keystroke coefficient, response proportion, and response corrections are then
covered in Sections 4.1.3, 4.1.4, and 4.1.5 respectively. Lastly, we search for correlations between code
complexity metrics, participant demographics, and performance metrics across all trials.

4.1.1 Output Distance

Figure 5: Normalized output distance distributions by program base (all trials).

In general, participants performed well in their predictions of program output. About 75% of the individual

14

trials results in a “correct” answer – i.e., a match with the true program output when excluding formatting
characters. Almost 64% of the trials had perfect output matches (including whitespace and formatting
characters). Figure 5 shows the output distance distributions for all trials grouped by program base (see
Section 3.3 for details). These distributions make it clear which programs were more difficult: between,
counting, and scope stand out with more output distances above zero. The non-zero peaks, such as 0.4 in
counting, correspond to common errors made participants. Section 4.2 unpacks the results for individual
programs, including which errors were most common.

4.1.2 Trial Duration

Figure 6: Duration distributions by program base (all trials).

The median trial duration was 55 seconds, with the full range being 12 to 518 seconds (about 8 1/2 minutes).
If we split the trials into those with a correct response and those without, the median trial durations become
55 and 50 seconds respectively. This difference, however, is not statistically significant. When trials
durations are grouped by program base and transformed to log space, however, we can see some import
timing differences (Figure 6). Many of these visual differences are statistically significant as well. Using an
all-pairs Mann-Whitney U test (with a Bonferroni correction, α = 0.05), most of the durations distributions
differ (Figure 7). The between, rectangle, and whitespace programs stand out here – their duration
distributions are different from all others (including each other).
There is a very strong correlation between mean trial duration (again, grouped by program base), and the
number of lines in those programs (r(10) = 0.75, p < .05). This is not terribly surprising; we expect longer
programs to take more time on average to read. What is surprising, however, is the lack of a significant
correlation between mean trial duration and cyclomatic complexity (CC), a common measure of program

15

Figure 7: Significant differences between trial durations grouped by base. Dark cells indicate no significant difference.

complexity. So while longer programs took longer to read/response to on average, more complex programs
(CC-wise) did not. If we use Halstead effort as our measure of complexity, however, we again find a very
strong correlation with mean trial duration (r(10) = 0.78, p < .01).

4.1.3 Keystroke Coefficient

Analyzing the distributions of keystroke coefficients provided insight into how participants were responding,
rather than just their final answer (Figure 8). In most correct trials, participants typed only as much as
necessary or just a few keystrokes extra (median coefficient was 1, mean 1.4). We were surprised to see
keystroke coefficients less than 1 for a few correct trials; this would mean that a participant managed to type
fewer keystrokes than necessary, yet still produce the correct response! Fortunately, there is a simple
explanation: copy and paste.
For the counting programs especially, we found that participants were copying and pasting portions of
their response (counting has a lot of redundant text in the correct response), allowing them to achieve a
correct answer without physically typing all the necessary keystrokes. There were a handful of trials in other
program types with a keystroke coefficient less than 1, leading us to suspect that one or two participants
were typing each program into a Python interpreter and pasting the results into the output box 3. These
trials made up less than half a percent of our dataset, however, so we do no consider them a thread to the
validity of our results.

4.1.4 Response Proportion

The response proportion distributions in Figure 9 show how much of the participants’ trials were spent
responding. Intuitively, we might expect response proportion to increase with the size of the correct

3We presented our programs as images rather than text to discourage this behavior.

16

Figure 8: Keystroke coefficient distributions by program base (correct trials only).

Figure 9: Response proportion distributions by program base (all trials).

17

response – i.e., programs with longer outputs may take proportionally longer to respond to. An alternative
hypothesis, however, is that participants would spend more time up front reading programs with longer
outputs (perhaps because they are more complex in some sense), thus maintaining a constant response
proportion relative to output size. In this case, the data match intuition: mean response proportion (grouped
by program version) is strongly correlated with program output size (r(25) = 0.54, p < .01).
Surprisingly, we do not find a correlation between response proportion and the number of lines in a
program (or any of our source code complexity metrics). We expected more complex programs, as measured
by lines of code, cyclomatic complexity, or Halstead effort, to have higher response proportions because of
the potential additional mental load on the programmer. A higher response proportion would mean that the
participant started typing their output early in the trial, and continued typing late in the trial (presumably to
offload mental effort). In Figure 9, we can see two programs that fit this expectation: between and
whitespace both have right-skewed distributions and are relatively long programs. But counting and
rectangle buck the trend. The counting programs are tiny with lots of output, and the rectangle

programs are long with little output. Their distributions are also right and left-skewed, respectively – the
opposite of what we might expect from program size alone.

4.1.5 Response Corrections

Figure 10: Response correction distributions by program base (all trials).

Not all keystrokes are created equal, and Figure 10 shows that some programs resulted in more corrections
(or backtracks in response size) than others. The between and counting programs stand out here, with
median response corrections of 1 (all others had medians of 0). This can be largely explained by the intuition
that having more characters to type will simply result in more mistakes. And indeed, we find a very strong

18

correlation between mean response corrections (grouped by program) and the number of characters in the
correct output (r(10) = 0.90, p < .001).
Across all trials, we found a strong positive correlation between response proportion and the number of
response corrections (r(1575) = 0.46, p < .001). This suggests that when participants spent more of their
trial time responding, that time was spent making corrections (as opposed to carefully building their
responses piece by piece). We also found weak position correlations between keystroke coefficient/trial
duration and response corrections (r(1575) ≈ 0.2, p < .001). These correlations further support the idea that
participants who took longer did so to correct mistakes rather than read the code more thoroughly.

4.1.6 Complexity Metrics and Demographics

Can a participant’s performance be predicted by a combination of code complexity/performance metrics
and demographics? In this section, we describe several simple models for predicting performance on
individual trials. These are not intended as cognitive models, which would describe the inner mental
processes of our participants. Rather, they are descriptive models, relating predictor and response variables
mathematically. We start by examining correlations between pairs of metrics, both complexity and
performance. Next, we use a LASSO-LARS and cross-validation technique to identify the strongest
predictors of each performance metric (see Section 3.4 for details). Finally, we focus on the normalized
correct output distance and the binary “correct/incorrect” metric for each trial, including the remaining
performance metrics as predictors in our models.

Figure 11: Spearman correlation matrices between code complexity and performance metrics (bolded). From left to right, code
characters (CodeCh), lines of code (CodeLn), correct output distance (CorrDist), cyclomatic complexity (CyCm), log duration in
milliseconds (DurLog), Halstead effort (HalEff), keystroke coefficient (KeyCoeff), output characters (OutCh), output lines (OutLn),
response corrections (RespCorr), and response proportion (RespProp).

Figure 11 shows a Spearman correlation matrix between complexity and performance metrics across
all 1,575 trials. Only significant correlations above threshold have displayed numeric values. Significance

19

was determined via resampling: we computed the correlation matrix for 1,000 randomly shuffled versions of
the data and rejected the null hypothesis for each cell if its correlation was outside the 95th percentile of the
corresponding shuffled correlation distribution. Coefficients were also thresholded, with absolute values
required to be greater than or equal to 0.2 (our threshold for a weak correlation).
Although the correlation matrix is intended for comparing complexity and performance metrics, we can also
see how strongly correlated some of the complexity metrics are with each other. Specifically, lines of code
(CodeLn) and Halstead effort (HalEff) are very strongly correlated with each other, as are output characters
(OutCh) and output lines (OutLn). Cyclomatic complexity (CyCm), however, is only moderately correlated
with lines of code (r(1575) = 0.30). These correlations are not surprising in and of themselves, but they do
reveal important patterns in our programs. First, as our programs get longer, they tend to introduce more
variables (Halstead operands) but not many more branches (as measured by cyclomatic complexity).
Second, programs with more print statements (output lines) also output more characters. This correlation
could have been reversed or non-existent had we combined print statements at the end of the program (e.g.,
print x, y, z as opposed three separate print statements). When interpreting the models below, it’s
important to keep these patterns in mind.
Another interesting feature of Figure 11 is that the keystroke performance metrics (response proportion,
response corrections, keystroke coefficient) are moderately to strongly correlated with the keystroke
complexity metrics (output chars/lines), while the log trial duration is strongly correlated with code
complexity metrics (lines of code, Halstead effort). This suggests that trial duration may be driven more by
the length of the program and number of unique variables than the size of the program’s output.
Surprisingly, we find no significant correlations between correct output distance and the other metrics! This
does not mean that a participant’s response correctness cannot be predicted, however. We turn our attention
next to slightly more complex models, involving multiple predictors.

Multiple Predictor Models
Most of our performance metrics (excluding correct output distance) are correlated with one or more
complexity metrics. But do these metrics equally contribute to performance? Additionally, can we improve
predictions by including participant demographics, specifically age, years of Python experience, and years of
programming experience? In this section, we examine performance models with multiple predictors.
Figure 12 shows the results of our best model fits, broken down by performance metric. Recall that these are
LASSO-LARS fits, so predictors with coefficients of zero have been eliminated from the model. Except for
keystroke coefficient and response proportion, the results are somewhat disappointing. The coefficients for
all other models are quite small given the range of the corresponding performance metrics (Table 2). Correct
output distance ranges from 0 to 1, making the largest coefficient (output lines at 0.06) only a minor
contributor. Likewise, log trial duration peaks at 13.15 in our dataset, representing approximately 8 and a
half minutes, while the largest coefficient (CyCm - cyclomatic complexity) represents an effect of about 1 and
a half milliseconds. Response corrections ranges from 0 to 8 in the data, whereas all of the corresponding
model coefficients combined do not even reach 1 (a full correction).
Only keystroke coefficient and response proportion have coefficients with meaningful values relative to their
metrics’ ranges. In both cases, the number of output lines (OutLn) is the most significant predictor. For
keystroke coefficient, more output lines predicts a lower metric value, meaning that participants typed fewer
unnecessary characters when there were fewer print statements. Note that output characters (OutCh) is not

20

Figure 12: Coefficients for best-fitting models by performance metric. All models were fit with LASSO-LARS and 20-fold cross
validation.

21

a very significant predictor even though it and keystroke coefficient are moderately correlated by themselves
(Figure 11). It appears, then, that participant behavior is being driven by the number of print statements,
rather than the number of characters they need to type.
Response proportion is also best predicted by output lines, but the relationship is positive. This result has a
fairly straightforward explanation – participants do not generally read the entire program before beginning
to evaluate it and respond. Thus, participants in trials whose programs have more print statements (output
lines) tend to start responding earlier. A more detailed analysis of individual participants may reveal more
nuanced strategies, but evaluating print statements as they are read appears to be the dominant one.
Overall, we found that most our performance metrics could not be strongly predicted simply by code
complexity metrics and participant demographics. In the next section, we focus on correct output distance.
This performance metric is unique, as it is computed after the participant’s response has been submitted.
Thus, in addition to complexity metrics and demographics, we also consider other performance metrics as
predictors.

Correct Output Distance Models
In this section, we consider models that predict a trial’s normalized correct output distance using the
corresponding program’s code complexity metrics, the participant’s demographics, and the other performance
metrics from the trial. Figure 13 shows the coefficients for a LASSO-LARS model fit. This differs in several
important ways from the CorrDist fit in Figure 12. First, the coefficients are larger (correct distance ranges
from 0 to 1), giving us more confidence in the real-world power of the model. Second, it’s clear that the other
performance metrics dominate the model; especially response proportion. In general, it appears that trials
with a larger response proportion and longer duration had a more correct response (lower is better for
CorrDist), whereas those with a larger keystroke coefficient had less correct responses. This may be because
participants that both took more time in a trial, and spent that time slowly constructing their response, did
better. If that time was spent typing additional keystrokes – increasing the keystroke coefficient – then the
additional characters were likely mistakes.

Figure 13: Coefficients for LASSO-LARS model predicting normalized correct output distance.

Modeling how close a participant’s response was to being correct may be more fine grained than necessary if
we’re not trying to predict how correct they were. Can we get better predictions if we simply ask whether or
not a correct response was given? For this (binary) prediction, we employ a set of classifiers from the
popular scikit-learn library [23] trained on all trials using K-fold cross-validation (K = 20) to predict
whether or not the trial response was correct. Figure 14 shows the Area Under the receiver operating
characteristics (ROC) Curve (AUC) scores for six different classifiers trained on the same dataset. The AUC
score is “the probability that the classifier will rank a randomly chosen positive instance higher than a

22

randomly chosen negative instance.” [13] An AUC score of 0.5 represents random guessing, and a score of
1.0 represents perfect classification.

Figure 14: Area Under the Curve (AUC) scores for K = 20 binary classifier runs predicting correct/incorrect trial (left). Feature
importances and standard deviations for Random Forest classifier predicting correct/incorrect trial (right).

The six classifiers in Figure 14 are Naive Bayes (bayes), a simple stratified baseline classifier (dummy), Extra
Trees (extra), Random Forest (forest), Logistic Regression, and Decision Tree (tree). Table 3 provides more
detailed descriptions of each classifier. The boxplots on the left in Figure 14 show the AUC score
distributions over all 20 cross-validation runs. As expected, the “dummy” classifier hovers around 0.5,
which is no better than random guessing. The other classifiers perform better on average than dummy, but
the Random Forest (forest) classifier outperforms the others. This is an ensemble, or meta, classifier that
constructs a “forest” of random decision trees which are each trained on sub-samples of the data. The
combined predictions of all trained trees are then used to drive the forest’s classification of new instances.

Category Classifier Description
Naive Bayes Gaussian Bayes theorem with assumption of independence.
Dummy Predicts based on training set’s class distribution.
Ensemble Extremely Randomized Trees Random thresholds and candidate features.
Ensemble Random Forest Constructs classifiers using random features.
Linear Logistic Regression Standard logistic regression
Decision Tree Infers if-then-else decision rules from data features.

Table 3: Descriptions for all classifiers used to determine utility.

The right-hand plot in Figure 14 dives deeper into the Random Forest classifier results. The so-called
“feature importances” are displayed in descending order, with the most important features for prediction
accuracy on top. These importances are determined by training N = 250 trees on the data, and then
compiling the relative importance of each feature across them all. As with the LASSO-LARS model in
Figure 13, the three most important predictors are response proportion, keystroke coefficient, and log trial
duration. Here, however, keystroke coefficient is consistently ranked higher than the others. Because we are
predicting a binary outcome (correct/incorrect) rather than the real-valued output distance, this suggests
that keystroke coefficient has a useful, though not strongly linear, relationship with response correctness. It
may be the case, for example, that a handful of extra characters is enough to guess that the participant will

23

be submitting an incorrect response.

4.2 By Program Version

In this section, we analyze participant performance by program version. Each program base had 2-3
versions, one of which a participant randomly received. Below, we describe the code differences between
and motivations for each program version. We discuss participants’ most common errors, and contrast
performance results between versions.

4.2.1 between

The between programs were intended to test the effects of pulled-out versus inline functionality (i.e., putting
code into functions versus repeating it). In both versions, two lists are filtered and printed, and then the
common elements in the original lists are printed. The functions version (Appendix A.1.1) contained two
functions (between and common), corresponding to the filtering and intersection operations performed on
the two lists. The inline version (Appendix A.1.2) did not contain any function definitions, repeating code
instead.
We found that the functions version had a significantly higher median output distance (U = 2265, p < .05),
though the effect size was small (r = 0.16). This means that participants in general gave slightly more
correct responses on the inline version. We expected that having the filtering and common operations
pulled out into reusable functions would benefit experienced programmers, who could quickly chunk the
definitions and then interpret the main body of the program. The opposite appears to be the case, as there
was a significant interaction between years of programming experience and program version
(F(3, 145) = 3.057, p < .05), with experience hurting and inline helping. Again, effect sizes were small, so
these results may not generalize.
But how did expertise specifically impact response correctness? We found that more experienced
programmers were more likely to make a very specific error, regardless of version. In approximately 41% of
between trials, the following response was given:

[8, 7, 9]

[1, 0, 8, 1]

[8]

The last line is incorrect, and should be [8, 9, 0] instead. More experienced programmers gave this
response more often, with a significant logistic regression coefficient of 0.25 (p < .05). An informal,
post-experiment interview with one participant suggests a plausible explanation: the common error
response is correct if we mistakenly assume that the common operation is performed on the filtered lists
instead of the original lists (x and y). Experienced programmers may be expecting the high-level behavior of
the program to be FILTER LIST, FILTER LIST, INTERSECT FILTERED LISTS rather than what the code really
says: FILTER LIST, FILTER LIST, INTERSECT ORIGINAL LISTS. Our interviewee summed up the reason for
their mistake: “why would you bother filtering the lists if you don’t use the results?” This was unexpected,
and suggests that between may be better placed in the “expectation violations” category rather than
“physical characteristics of notation”.

24

Less experienced programmers were expected to take more time on the functions than on the inline

version due to the need to refer back to the functions often. We did not observe this in the data and, in fact,
we did not find a significant difference in any of the other performance metrics between versions.

4.2.2 counting

The counting programs tested the effects of whitespace on the grouping of statements in a for loop. Python
does not have a keyword or delimiter for the end of a block because indentation is mandatory. Both versions
of counting did the same thing: print “The count is i” and “Done counting” for i ∈ [1, 2, 3, 4]. While the
nospace version (Appendix A.2.1) had the for loop declaration and the two print statements in the body
on consecutive lines, the twospaces version (Appendix A.2.2) added two blank lines between the first and
second print statement. Because Python is sensitive to indentation, this did not change the semantics of the
program (i.e., both print statements still belonged to the for loop).
We saw a stark contrast in correct responses between versions. Approximately 60% of the twospaces

responses failed to group the second print statement (“Done counting”) with the for loop. The effect is
easily visible in the output distance distributions (Figure 15), with the peak around 0.4 in twospaces

corresponding to these errors. Surprisingly, Python experience and overall programming experience did not
have a significant effect on the likelihood of making this mistake!

Figure 15: Grade distributions for counting programs.

Whitespace was not the only contributor to the incorrect grouping of the final print statement.
Approximately 15% of responses in the nospace trial contained this same error, despite there being no
whitespace between lines in the for loop. Even with no effects of physical notation, there is still an
expectation violation in the code: the final print statement says “Done counting,” but this text is repeated
for every loop iteration in the correct output. By mentally moving the print statement outside of the loop
body, the (incorrect) output makes much more sense:

The count i s 1
The count i s 2
The count i s 3
The count i s 4
Done counting

25

So we have two likely contributors to the large percentage of errors in the twospaces version: whitespace
(physical notation) and non-sensical output (expectation violation). While we expected both, we did not
expect to have no effect of experience (Python and overall programming). For such a simple program, this is
quite surprising, and perhaps indicative of the need for an “end of block” keyword or delimiter in the
language.

4.2.3 funcall

The funcall programs each performed a compound calculation using a single, simple function
f (x) = x + 4 (Appendix A.3). The calculation, f (1)× f (0)× f (−1), either had no whitespace between
terms (nospace version), a single space between all tokens (space), or had each call to f (x) bound to a
variable before completing the calculation (vars). We expected to find an effect on trial duration and
possibly calculation errors, with more whitespace facilitating faster and more correct trials. In the vars

version especially, we expected having the calculation broken out into multiple, named steps (i.e., x, y, z)
would ease participants’ mental burden.
Surprisingly, we did not find a difference between any of the three versions for any of the performance
metrics. Participants performed equally well despite differences in whitespace and the use of variables for
intermediary calculation steps. Approximately 89% of trials were correct for the funcall programs, above
the average of 75% for all 10 program bases. For the 11% of incorrect trials, the two most common responses
were 0 and −60. We hypothesize that these responses correspond to the incorrect assumption by
participants that f (0) = 0 and f (−1) = −3. Together, though, these two types incorrect responses
constituted only a half a percent of the total funcall trials, so they do not provide strong evidence for a
generalizable pattern in the data.

4.2.4 initvar

The initvar programs each contained two accumulation loops: one performing a product, and the other
performing a summation (Appendix A.4). In the good version, both loops were intended to meet
expectations; the product loop had an initial value of 1, and the summation loop had an initial value of 0.
The onebad version, however, started the summation loop at 1 (an off-by-one error). The bothbad version
contained the same error, and also started the product loop at 0 (making the final product 0). We expected
these “bad” versions to violate participant expectations, possibly more so in experienced programmers.
More errors were expected in the onebad version relative to good, and even more errors were expected in the
bothbad version.
Our expectations were violated by the actual results. We did not not observe a significant difference in
output distance or likelihood of a correct response between program versions. In fact, the only significant
difference between versions came from response proportion (Figure 16). After a Kruskal-Wallis H test
(H(2) = 16.72, p < .001), a pair-wise Mann-Whitney U test (with a Bonferroni correction, α = 0.05) revealed
that both the good and onebad versions had significantly lower response proportions than bothbad (10-20%
lower).
This result can partially be explained by participants quickly noticing that the first loop will result in a being
0, and short-circuiting the calculation. By typing a “0” early in the trial, the response proportion metric

26

Figure 16: Response proportion distributions for initvar programs.

would be inflated, assuming they spent more time elsewhere. Indeed, we did not observe a significant difference
in trial duration between versions, suggesting that bothbad participants took the same amount of time as
others. The keystroke coefficient and response corrections metrics did not differ either, so bothbad

participants did not spend their extra response time making corrections. Instead, the data suggest they either
took longer on the second loop, or perhaps reviewed their quick response to the first loop before completing
the trial. A more in-depth analysis of the individual keystrokes is needed to answer these questions.

4.2.5 order

The order programs contained three functions, f (x), g(x), and h(x). While f and g added 4 and doubled x
respectively, h computed f (x) + g(x) (Appendix A.5). In the main body, all three functions were called on
x = 1 in the same order: f , g, h. The order in which the three functions were defined was either in the called
order (inorder), or in a slightly different order (shuffled) – h, f , g. With this simple manipulation of
notation, we expected participants to exhibit a different in trial durations. The shuffled version had an
incongruent definition and call order, so we expected participants to take longer on this version due to a less
efficient visual search.

Figure 17: Duration distributions for order programs.

Our hypothesis was supported by the data, though the effect size was small (Figure 17). We observed a
significant difference in log trial durations between the inorder and shuffled versions
(U = 2530.0, p < .05). The difference in duration medians was fairly small (0.1 log seconds), as was the rank
biserial correlation (r = 0.18). Despite the small effect size, it is still impressive to observe a significant result

27

with such a small change to the code! We did not observe differences between versions in any other
performance metric. Because approximately 93% of participants provided the correct response, we are
confident the incongruent definition/call order produced an effect purely on visual search efficiency. An
in-depth analysis of the collected eye-tracking data is needed to further support this hypothesis.

4.2.6 overload

The overload programs tested the effects of operator overloading (Appendix A.6). Each program had three
blocks of code, each with two variable assignments followed by an operation with those two variables (and
a printing of the result). The final block always assigned a string “5” and string “3” to variables e and f, and
then printed e + f. The preceding two blocks either had exclusively multiplications (multmixed), additions
(plusmixed), or string concatenations (strings). We expected plusmixed to give participants the most
trouble, both in terms of error and additional time, because the + operator was used to mean both addition
and concatenation. Additionally, we expected participants to be faster at the strings version because no
numerical operations were present in the program, thus there should be no priming for the numeric
overload of +.
The results surprised us. We saw no significant difference between versions in terms of errors or response
proportion. Approximately 11% of responses incorrectly computed 5 + 3 = 8 for the final code block
instead of "5" + "3" = "53", but any difference between versions was not significant. We did, however,
observe the same pattern across trial duration, keystroke coefficient, and response corrections: the strings

version was significantly different from the multmixed version, but not plusmixed.
A Kruskal-Wallis test followed by a Mann-Whitney U test (with correction) showed that strings had a
significantly higher log duration than multmixed (U = 1095.5, p < .01) with a decent effect size (r = 0.31).
It’s tempting to explain this simply by noting that the strings version requires more keystrokes to get the
correct response than both of the others. However, the duration (and keystroke coefficient, response
proportion) metrics are significantly different only between strings and multmixed (not strings and
plusmixed, nor multmixed and plusmixed). So we can see indirectly that the use of the overloaded + in
plusmixed has had an effect – unlike multmixed, this version is not significantly different than strings.

Figure 18: Duration distributions for overload programs.

How did the use of an overloaded operator impact participants in plusmixed? This is difficult to answer
precisely because the statistics only allow us to compare with the other versions. We know that plusmixed is
not significantly different strings in terms of trial duration, even though the only difference multmixed and
plusmixed is the numeric operator used in the first two code blocks. This leads us to believe that

28

participants were slowed down slightly in the plusmixed version, but not enough to be significantly different
from multmixed. Indeed, the median log trial duration for plusmixed (10.29) is sandwiched between
multmixed (9.99) and strings (10.43) – see Figure 18. We see the same pattern with keystroke coefficient and
response corrections: plusmixed is between the other two, but not significantly different (while multmixed

and strings are). Thus, operator overloading appears to decrease performance (excluding response errors),
but not enough to completely differentiate it from a nearly identical program without overloaded operators.

4.2.7 partition

The partition programs each iterated through a list of numbers and printed the number plus a “high” or
“low” designation on each line (Appendix A.7). Numbers less than 3 were low, and numbers greater than 3
were high (3 itself was skipped). The balanced version iterated over [1, 2, 3, 4, 5], producing an equal number
of low and high numbers. In contrast, the unbalanced and unbalanced pivot versions iterated over
[1, 2, 3, 4], printing two low and only one high. The unbalanced pivot version used variable pivot = 3

instead of the constant 3 in its if statements.
We expected participants to perform better (in terms of error rates) on the balanced version because of the
symmetric low and high values. This symmetry was expected to aid in the recognition of this program’s
purpose: partitioning a list based on a pivot element. For the other versions, we expected unbalanced to
have the highest error rates, with unbalanced pivot having slightly fewer errors due to the pivot element
being explicitly named.
We were surprised to find no significant differences between versions across all performance metrics.
Approximately 70% of responses were correct, and we did not observe a systematic difference in errors
between versions. An ordinary least squares regression did show a very small, but significant, effect of
programming experience on output distance (F(1, 157) = 5.07, p < .05). The coefficient was negative
(−0.0038), indicating that more experience decreased errors, but is far too small to make any broad claims.
The most common error across all versions was leaving the number off of each line (i.e., assuming print i,

"XXX" was just print "XXX"). This error occurred in approximately 19% of responses, but did not seem to
occur more in any particular version. Around 7% of responses included an extraneous line for 3, but there
was not a significant bias for any version or whether this number was marked high or low.

4.2.8 rectangle

The rectangle programs (Appendix A.8) computed the area of two rectangles, represented either as a
collection of four x/y variables (basic), a Rectangle object (class), or a pair of (x, y) coordinates
(tuples). We expected the class version to take the most time because it is longer and significantly more
complex according to our metrics (Figure 19). The basic version was expected to take the least amount of
time due to its use of simple variables for rectangle representation.
Interestingly, we did not observe a different between versions for any of the performance metrics. In fact,
this set of programs had the highest percentage of correct answers (about 96%) of any other program base.
This is surprising from a complexity metrics perspective, given that the rectangle programs were some of
the longest ones in our entire set (see Table 4 in the Appendix). These results are unsurprising, however,
when we consider our participant demographics: programmers with a mean age of 28. Our participants

29

Version LOC CC HE

basic 18 2 18801
class 21 5 43203
tuples 14 2 15627

Figure 19: Complexity metrics for rectangle program versions. Metrics are lines of code (LOC), cyclomatic complexity (CC),
and Halstead effort (HE).

have all likely had experience with geometry, and could therefore leverage a large amount of domain
knowledge when evaluating the rectangle computations. In retrospect, we should have introduced a
calculation bug into these programs’ area functions and seen if there was a 96% error rate instead! As it
stands, rectangle demonstrates how domain knowledge can overwhelm differences in representation and
notation.

4.2.9 scope

The scope programs applied two functions to a variable named added: one named add 1, and the other
named twice (Appendix A.9). Both of these functions produced no visible effects – they did not actually
modify their arguments or return a value. In the samename version, we reused the variable name added for
each function’s parameter name. For the diffname version, however, we used a different parameter name
for both (num). Because the add 1 and twice functions had no effect, the main added variable retained its
initial value of 4 throughout the program (instead of being 22). This directly violates one of Soloway’s Rules
of Discourse [30]: do not include code that will not be used.
We expected participants to mistakenly assume that the value of added was changed more often when the
parameter names of add 1 and twice were both also named added (i.e., in the samename version). The actual
results were much more interesting: around 48% of responses were incorrect, regardless of version! There
were no significant differences between versions across all performance metrics, but we did observe an effect
of experience. A logistic regression predicting a correct response from years of Python experience yielded a
significant effect (intercept = −0.37, OR = 1.25, p < .05). Because the odds ratio (OR) is greater than 1, we
can infer that more Python experience helped increase the odds of a correct response. This same effect was
not observed for overall programming experience, however.
Although anecdotal, our experience with participants in the eye-tracker may help explain why Python
experience, and not overall programming experience, aided participants. While evaluating one of the scope

programs, several participants paused and asked the experimenter (who was behind a partition) whether
the Python language was “call by value” or “call by reference.” In short, this is the difference between
add 1(x) only being able to modify a copy of x (call by value) or the original x (call by reference). Python
exhibits both behaviors, depending on what x contains. In the case of the scope programs, added was an
integer, so neither function could possibly modify it4.
Python’s “call by” behavior is not unusual with respect to most commonly-used programming languages.
We hypothesize that participants had strong expectations against seeing unused code (Soloway’s rule), but
also recognized that the functions did not return values. Thus, they had to resolve the conflict by appealing

4Were added to be list or dictionary, then that list or dictionary could be modified by a function. Which object the added variable
points to, however, could not.

30

to their knowledge of the Python language itself. The fact that almost half the responses were incorrectly 22,
however, demonstrates the power of Soloway’s rule. If our hypothesis is correct, many highly-experienced
programmers were more willing to bend the language’s rules than accept code that does nothing.

4.2.10 whitespace

The whitespace programs print the results of three simple linear calculations (Appendix A.10). In the
zigzag version, the code is laid out with one space between every mathematical operation, so that the line
endings have a typical “zig-zag” appearance. The linedup version, in contrast, aligns each block of code by
its mathematical operators, nicely lining up all identifiers. We expected there to be a speed difference
between the two versions, with participants being faster in the linedup version. When designing the
experiment, most of our pilot participants agreed that this version facilitated reading, but the data did not
support this claim.
Approximately 87% of responses were correct, and there were no performance differences between versions.
Using an ordinary least squares regression, we did find a significant effect of years of Python experience on
log trial duration (F(1, 157) = 5.247, p < .05). The coefficient (−0.043) is very small, though, even for the log
millisecond scale. It is also not terribly surprising that more experienced Python programmers were a bit
faster in general.
When inspecting the kinds of errors participants made (only about 13% of responses), we noted that a
specific kind of error only occurred in the zigzag version. Five participants (about 6% of zigzag responses)
answered 10 and 15 for the last two y values rather than the correct values of 6 and 115. These are the
answers that would be obtained if a participant executed the multiplications before the additions, contra the
established of order of operations of Python and mathematics more generally. Effects of spacing on the
perceived order of arithmetic operations have been studied before [16], and our results suggest that spacing
in code layout also may also have an impact on order of executed operations.

4.3 By Experience and Correctness

How does performance vary with expertise, and whether or not the response was correct? We analyzed all
trials grouped by the correctness of the response, and separately by whether or not the participant was
considered an expert. Expertise was defined as having 5 or more years of Python experience, or having 10 or
more years of overall programming experience. In general, we expected experts to perform better across
individual performance metrics (fewer errors, lower trial durations, etc.). When looking at correct versus
incorrect trials, we expected to see distinct differences in groups of performance metrics – e.g., longer trial
durations, but fewer response corrections.

4.3.1 Correct/Incorrect Trials

While the majority of trials had a correct response (approximately 75%), there were still significant
performance differences between correct and incorrect trials. Trial durations did not significantly differ, but
we did observe the following differences in other performance metrics:

5Confusingly, two of these participants provided the correct first line (0 1), while the other three were consistently wrong with (0 5).

31

• Keystroke Coefficient - correct trials had significantly smaller keystroke coefficients
(U = 216, 622.5, p < .05, r = 0.073).
• Response Proportion - correct trials had significantly smaller response proportions

(U = 216, 770.5, p < .05, r = 0.073).
• Response Corrections - correct trials had significantly fewer response corrections

(U = 208, 360.0, p < .01, r = 0.11).

From the above observations, we could infer that participants providing a correct response tended to spend
more time reading before responding (smaller response proportion), and less time fixing mistakes (fewer
response corrections, smaller keystroke coefficient). Unfortunately, the effect sizes (r) were below our
threshold of 0.2 for a meaningful relationship (see Section 3.4), so our confidence in the real-world impact of
these inferences is reduced.

4.3.2 Expert/Non-Expert Trials

We divided our participants into experts and non-experts depending on their Python and overall
programming experience. Participants with 5+ years of Python experience or 10+ years of programming
experience were considered to be experts in the scope of our task. Given that our programs did not stray from
material covered in a first year Python course, we are confident in this classification. We had 52 expert
participants and 110 non-expert participants in the experiment, and observed the following performance
metric differences between expert and non-expert trials:

• Output Distance - expert trials had significantly lower correct output distances
(U = 255, 331.0, p < .01, r = 0.06).
• Log Duration - expert trials had significantly lower log trial durations

(U = 238, 531.5, p < .001, r = 0.12).

These observations were surprising to us for several reasons. First, as with the correct/incorrect trial
performance differences, the effect sizes were below our threshold for a meaningful relationship (0.2). With
such strong conditions for being considered an expert, we expected to observe much stronger performance
differences. Second, we did not observe any significant differences in the other performance metrics
between expert and non-expert trials (keystroke coefficient, response proportion, response corrections). We
hypothesize that this is due to (1) the simple nature of our programs in general, and (2) looking at all trials
together rather than separated by program base/version.
When comparing trials by program version, we do observe strong differences due to Python/programming
experience (Section 4.2). Across all trials however, the effect is likely diminished due to “easy” programs on
which experts and non-experts perform similarly. Indeed, half of the programs bases had over 75% correct
responses (overload, whitespace, funcall, order, and rectangle). With more difficult programs, we
would expect to observe much stronger distinctions between experts and non-experts across all trials.

32

5 Discussion

In Section 4, we analyzed trials in the eyeCode experiment by grouping them in various ways, and then
comparing performance metrics between groups. We analyzed trials grouped by program base (Section 4.1),
by program version (Section 4.2), and by response correctness/participant expertise (Section 4.3). Below, we
relate these results to each of our three research questions:

• RQ1: How are programmers affected by programs that violate their expectations, and does this vary
with expertise?
• RQ2: How are programmers influenced by physical characteristics of notation, and does this vary

with expertise?
• RQ3: Can code complexity metrics and programmer demographics be used to predict task

performance?

5.1 Expectation Violations

We hypothesized that expectation-violating programs would result in slower response times and higher
error rates, perhaps more-so for experience programmers. Specifically, we expected the following program
versions to violate participant expectations:

base version(s) violation
initvar onebad, bothbad Wrong starting value and off-by-one error.
overload plusmixed Plus operator used for addition and concatenation.
partition unbalanced, unbalanced pivot Unequal number of “low” and “high” outputs.
scope diffname, samename Included code does not produce any effect.

Of these, only scope produced an expected effect (high error rates). This was especially interesting because
some programmers reported questioning the language semantics rather than accepting a program with
(effectively) useless code in it (see Section 4.2.9 for details). As predicted by previous research [30], this effect
was modulated by experience; more experienced Python programmers less likely to make the mistake. A
similar effect was observed in partition (programming experience reduced errors), but there was no
difference between versions. A more dramatic effect of experience – specifically domain knowledge – was
seen with all three rectangle programs. Despite notational differences, we did not observe any difference
between versions. In fact, the rectangle programs had the highest percentage of correct responses for any
program base (96%); a testament to the utility of domain knowledge when the code and domain are
congruent6.
It’s not unusual to see experience positively correlated with performance, but this is not a necessary
relationship. For example, the most common error made on the between programs was significantly more
likely to occur for more experienced participants (Section 4.2.1). Distortions of form and content during the
recall of programs by experienced participants have been observed in previous experiments [6]. With
between, experience was likely correlated with a distortion of content; participants appeared to ignore the
code in front of them and do what “made sense” instead. Something similar may have occurred during

6We expect that introducing a calculation error into the area function would strongly increase error rates.

33

trials with the nospace version of counting. Despite being a perfect example of a Python for loop, a
minority of responses (15%) contained only a single “Done counting” line at the end. As with between, this
indicates that participants interpreted the program’s intention rather than its literal code.

5.2 Physical Notation

The physical aspects of notation, often considered superficial, can have a meaningful impact on performance.
We expected to see differences in trial duration due to notational effects (except for counting). Specifically,
the following program versions were expected to produce notational effects:

base version(s) notation
between functions Filtering/intersection operations pulled out into functions.
counting twospaces Extra vertical whitespace between loop body statements.
order shuffled Incongruent function definition and call order.
rectangle basic, tuples, class Different data structure representations for rectangle.
whitespace linedup Code is horizontally aligned by mathematical operators.

The twospaces version of counting demonstrated that vertical space is more important then indentation to
programmers when judging whether or not statements belong to the same loop body. Programmers often
group blocks of related statements together using vertical whitespace, but our results indicate that this
seemingly superficial space can cause even experienced programmers to internalize the wrong program. As
mentioned in the previous section, at least some of this effect can be attributed to an expectation violation
due to the words “Done counting” in the final print statement. Indeed, our counting results could be seen
as additional evidence that high-level expectations drive performance more than notation. The rectangle

programs are another potential example – we did not observe any performance differences between
versions, most likely due to the overwhelming influence of domain knowledge.
We observed small notational effects on trial duration in the order and whitespace programs. Participants
were slowed down in the shuffled version of order, providing evidence of our hypothesis that the
congruence of function definition and calling order would aid in visual search. Python experience helped
participants on both versions of whitespace, but the zigzag version contained a handful of incorrect
responses indicative of the wrong order of operations. While this result was not statistically significant, it
suggests a path for future work in the study of notational effects in programming. We expect to see an
overlap with research on how physical spacing influences the perceived order of operations in
arithmetic [16].

5.3 Predicting Performance

Our final research question asked if trial performance could be predicted using complexity metrics from the
program’s source code and demographics from the participant. For basic correlations, we found moderate to
strong correlations between our keystroke metrics (keystroke coefficient, response proportion, response
corrections) and the number lines/characters in the true program output. Log trial duration was also found
to be moderately correlated with lines of code and Halstead effort. Surprisingly, correct output distance was
not significantly correlated with any single complexity metric.

34

Using a multiple-predictor linear model, we found that only keystroke coefficient and response proportion
had sizeable coefficients (Section 4.1). In both cases, the number of lines in the true output was the strongest
predictor. For keystroke coefficient, the relationship was negative – more output lines decreased the metric
(fewer unnecessary keystrokes). Response proportion increased with output lines, which makes sense if
participants began evaluating print statements as soon as they were encountered.
We were surprised to see such small coefficients for the other performance metrics, especially correct output
distance and log trial duration. At a minimum, we expected Python and/or programming experience to be a
strong predictor of correct output distance: more experience should reduce errors. Similarly, we expected
lines of code to strongly predict log trial duration: more code should take longer to read. In both cases,
however, our models did not reveal a strong (linear) relationship. Results improved for correct output
distance when we included other performance metrics as predictors, but the coefficients were still small
relative to the range of the response variable. It is possible that a non-linear model could provide a better fit
to the data, but we do not have a strong theoretical reason to expect specific interactions between predictors.
We investigated a more coarse-grained performance metric in the last part of Section 4.1: whether or not a
trial had a correct response. Using a collection of binary classifiers trained on all trials with cross-validation,
we found that the Random Forest classifier performed well; achieving a mean AUC score of 0.86 (with a max
of 0.94). This means that the probability of ranking a positive instance above a negative instance is
approximately 0.86 – much better than chance. We examined the relative importance of each predictor
(feature) for this classifier, and found that keystroke coefficient, response proportion, and log trial duration
were at the top. Thus, it appears that the correctness of a trial response can be well predicted in our data set,
but not by complexity metrics and demographics alone7. By considering the length of a trial and various
keystroke metrics, it appears we can strongly predict whether or not a participant’s response was correct.

6 Conclusion

In this paper, we presented an experiment in which programmers predicted the output of 10 Python
programs (drawn from a set of 25 programs). The performance of participants on each trial, a single program
prediction, was quantified using a collection of performance metrics. Small differences between versions of
each program were predicted to affect participants due to either expectation violations or attributes of
physical notation. We observed both kinds of effects, though not always where they were expected.
The scope and counting programs produced the largest error rates, closely followed by between. These
errors were driven by expectation violations entirely for scope, and partially for counting and between.
While it’s clear to an outside observer that the code and the program’s intention differ, many participants did
not notice. Interestingly, we observed Python/programming experience helping (scope), hurting (between),
and having no effect (counting). The scope results align with previous research on the so-called “Rules of
Discourse” for programming [30], but the other results are more reminiscent of Schank and Abelson’s
scripts [28]. Participants incorrectly responding to the between and counting programs appeared to be
inferring high-level intentions, and ignoring bottom-up cues (e.g., indentation) that did not fit the “script.”
Notational effects were observed in counting and order, with the strongest effects showing up in the
former. Python does not include an ending delimiter for blocks like many other languages (i.e., an end

7Training the Random Forest classifier without performance metrics results in a mean AUC score of 0.68.

35

keyword or closing brace), so indentation is the only visual cue for statement grouping. Our experiment
suggests that this visual grouping can be manipulated by simply by adding empty vertical whitespace
around grouped statements. There are many open questions, however, and we must be cautious in drawing
broad conclusions from this one experiment. Though much weaker, the observed notation effect in order is
also of interest. The two order programs are virtually identical, but the results suggested an implicit
expectation that the methods be called and defined in the same order8. A more spatially-oriented complexity
metrics, such as Douce’s FC metric [9], may be able to quantify these types of nuances.
Lastly, we found that predicting performance could only be done for the binary correct/incorrect response
metric, and only if other performance metrics were included as predictors. Were our programs more
difficult, or our task different, we would expect complexity metrics and demographics to drive performance
more than we observed in this experiment.

6.1 Future Work

During the course of the experiment, Bloomington participants were seated in front of a Tobii X300
eye-tracker. We plan to analyze this eye-tracking data, and correlate it with our findings here. Specifically,
we hope to see how code features and experience affect the visual search process and, by proxy, program
comprehension. We will also be investigating whether or not our performance metrics can be predicted from
eye-tracking metrics, such as mean fixation duration and spatial density [24]. Because we capture keystrokes
in real time, we have the opportunity to observe participants’ gaze patterns as they are responding and
(perhaps) correcting those responses.
For future experiments, we would like to include other languages and more realistic programs (e.g.,
multiple files and modules). Our work to date has focused exclusively on reading short Python programs,
so a similar experiment where participants write short programs may prove insightful. Task performance in
such an experiment may be more difficult to quantify, however. Our task has a well-defined expectation
(predict the program’s printed output), whereas asking participants to write a program according to some
specification may be too open-ended. Still, observing participants as they read a specification and
construct/modify a program would provide a window into the use of programming plans: hypothesized
mental schemas that programmers use to read and write programs [25].

7 Acknowledgements

Grant R305A1100060 from the Institute of Education Sciences Department of Education and grant 0910218
from the National Science Foundation REESE supported this research.

8It’s possible that the alphabetic names of the methods provided this implicit ordering.

36

A Appendix - Programs

A.1 between

A.1.1 between - functions

1 def between(numbers, low, high):

2 winners = []

3 for num in numbers:

4 if (low < num) and (num < high):

5 winners.append(num)

6 return winners

7

8 def common(list1, list2):

9 winners = []

10 for item1 in list1:

11 if item1 in list2:

12 winners.append(item1)

13 return winners

14

15 x = [2, 8, 7, 9, -5, 0, 2]

16 x_btwn = between(x, 2, 10)

17 print x_btwn

18

19 y = [1, -3, 10, 0, 8, 9, 1]

20 y_btwn = between(y, -2, 9)

21 print y_btwn

22

23 xy_common = common(x, y)

24 print xy_common

1 [8, 7, 9]

2 [1, 0, 8, 1]

3 [8, 9, 0]

37

A.1.2 between - inline

1 x = [2, 8, 7, 9, -5, 0, 2]

2 x_between = []

3 for x_i in x:

4 if (2 < x_i) and (x_i < 10):

5 x_between.append(x_i)

6 print x_between

7

8 y = [1, -3, 10, 0, 8, 9, 1]

9 y_between = []

10 for y_i in y:

11 if (-2 < y_i) and (y_i < 9):

12 y_between.append(y_i)

13 print y_between

14

15 xy_common = []

16 for x_i in x:

17 if x_i in y:

18 xy_common.append(x_i)

19 print xy_common

1 [8, 7, 9]

2 [1, 0, 8, 1]

3 [8, 9, 0]

A.2 counting

A.2.1 counting - nospace

1 for i in [1, 2, 3, 4]:

2 print "The count is", i

3 print "Done counting"

1 The count is 1

2 Done counting

3 The count is 2

4 Done counting

5 The count is 3

6 Done counting

7 The count is 4

8 Done counting

38

A.2.2 counting - twospaces

1 for i in [1, 2, 3, 4]:

2 print "The count is", i

3

4

5 print "Done counting"

1 The count is 1

2 Done counting

3 The count is 2

4 Done counting

5 The count is 3

6 Done counting

7 The count is 4

8 Done counting

A.3 funcall

A.3.1 funcall - nospace

1 def f(x):

2 return x + 4

3

4 print f(1)*f(0)*f(-1)

1 60

A.3.2 funcall - space

1 def f(x):

2 return x + 4

3

4 print f(1) * f(0) * f(-1)

1 60

A.3.3 funcall - vars

1 def f(x):

2 return x + 4

3

4 x = f(1)

5 y = f(0)

6 z = f(-1)

7 print x * y * z

1 60

39

A.4 initvar

A.4.1 initvar - bothbad

1 a = 0

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 1

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 0

2 11

A.4.2 initvar - good

1 a = 1

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 0

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 24

2 10

A.4.3 initvar - onebad

1 a = 1

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 1

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 24

2 11

40

A.5 order

A.5.1 order - inorder

1 def f(x):

2 return x + 4

3

4 def g(x):

5 return x * 2

6

7 def h(x):

8 return f(x) + g(x)

9

10 x = 1

11 a = f(x)

12 b = g(x)

13 c = h(x)

14 print a, b, c

1 5 2 7

A.5.2 order - shuffled

1 def h(x):

2 return f(x) + g(x)

3

4 def f(x):

5 return x + 4

6

7 def g(x):

8 return x * 2

9

10 x = 1

11 a = f(x)

12 b = g(x)

13 c = h(x)

14 print a, b, c

1 5 2 7

41

A.6 overload

A.6.1 overload - multmixed

1 a = 4

2 b = 3

3 print a * b

4

5 c = 7

6 d = 2

7 print c * d

8

9 e = "5"

10 f = "3"

11 print e + f

1 12

2 14

3 53

A.6.2 overload - plusmixed

1 a = 4

2 b = 3

3 print a + b

4

5 c = 7

6 d = 2

7 print c + d

8

9 e = "5"

10 f = "3"

11 print e + f

1 7

2 9

3 53

A.6.3 overload - strings

1 a = "hi"

2 b = "bye"

3 print a + b

4

5 c = "street"

6 d = "penny"

7 print c + d

8

9 e = "5"

10 f = "3"

11 print e + f

1 hibye

2 streetpenny

3 53

42

A.7 partition

A.7.1 partition - balanced

1 for i in [1, 2, 3, 4, 5]:

2 if (i < 3):

3 print i, "low"

4 if (i > 3):

5 print i, "high"

1 1 low

2 2 low

3 4 high

4 5 high

A.7.2 partition - unbalanced

1 for i in [1, 2, 3, 4]:

2 if (i < 3):

3 print i, "low"

4 if (i > 3):

5 print i, "high"

1 1 low

2 2 low

3 4 high

A.7.3 partition - unbalanced pivot

1 pivot = 3

2 for i in [1, 2, 3, 4]:

3 if (i < pivot):

4 print i, "low"

5 if (i > pivot):

6 print i, "high"

1 1 low

2 2 low

3 4 high

43

A.8 rectangle

A.8.1 rectangle - basic

1 def area(x1, y1, x2, y2):

2 width = x2 - x1

3 height = y2 - y1

4 return width * height

5

6 r1_x1 = 0

7 r1_y1 = 0

8 r1_x2 = 10

9 r1_y2 = 10

10 r1_area = area(r1_x1, r1_y1, r1_x2, r1_y2)

11 print r1_area

12

13 r2_x1 = 5

14 r2_y1 = 5

15 r2_x2 = 10

16 r2_y2 = 10

17 r2_area = area(r2_x1, r2_y1, r2_x2, r2_y2)

18 print r2_area

1 100

2 25

44

A.8.2 rectangle - class

1 class Rectangle:

2 def __init__(self, x1, y1, x2, y2):

3 self.x1 = x1

4 self.y1 = y1

5 self.x2 = x2

6 self.y2 = y2

7

8 def width(self):

9 return self.x2 - self.x1

10

11 def height(self):

12 return self.y2 - self.y1

13

14 def area(self):

15 return self.width() * self.height()

16

17 rect1 = Rectangle(0, 0, 10, 10)

18 print rect1.area()

19

20 rect2 = Rectangle(5, 5, 10, 10)

21 print rect2.area()

1 100

2 25

A.8.3 rectangle - tuples

1 def area(xy_1, xy_2):

2 width = xy_2[0] - xy_1[0]

3 height = xy_2[1] - xy_1[1]

4 return width * height

5

6 r1_xy_1 = (0, 0)

7 r1_xy_2 = (10, 10)

8 r1_area = area(r1_xy_1, r1_xy_2)

9 print r1_area

10

11 r2_xy_1 = (5, 5)

12 r2_xy_2 = (10, 10)

13 r2_area = area(r2_xy_1, r2_xy_2)

14 print r2_area

1 100

2 25

45

A.9 scope

A.9.1 scope - diffname

1 def add_1(num):

2 num = num + 1

3

4 def twice(num):

5 num = num * 2

6

7 added = 4

8 add_1(added)

9 twice(added)

10 add_1(added)

11 twice(added)

12 print added

1 4

A.9.2 scope - samename

1 def add_1(added):

2 added = added + 1

3

4 def twice(added):

5 added = added * 2

6

7 added = 4

8 add_1(added)

9 twice(added)

10 add_1(added)

11 twice(added)

12 print added

1 4

46

A.10 whitespace

A.10.1 whitespace - linedup

1 intercept = 1

2 slope = 5

3

4 x_base = 0

5 x_other = x_base + 1

6 x_end = x_base + x_other + 1

7

8 y_base = slope * x_base + intercept

9 y_other = slope * x_other + intercept

10 y_end = slope * x_end + intercept

11

12 print x_base, y_base

13 print x_other, y_other

14 print x_end, y_end

1 0 1

2 1 6

3 2 11

A.10.2 whitespace - zigzag

1 intercept = 1

2 slope = 5

3

4 x_base = 0

5 x_other = x_base + 1

6 x_end = x_base + x_other + 1

7

8 y_base = slope * x_base + intercept

9 y_other = slope * x_other + intercept

10 y_end = slope * x_end + intercept

11

12 print x_base, y_base

13 print x_other, y_other

14 print x_end, y_end

1 0 1

2 1 6

3 2 11

B Appendix - Program Metrics

47

Base Version Code Ch Code Ln CC HE HV Ouput Ch Output Ln

between functions 496 24 7 94192.1 830.2 33 3

between inline 365 19 7 45596.3 660.8 33 3

counting nospace 77 3 2 738.4 82.0 116 8

counting twospaces 81 5 2 738.4 82.0 116 8

funcall nospace 50 4 2 937.7 109.4 3 1

funcall space 54 4 2 937.7 109.4 3 1

funcall vars 72 7 2 1735.7 154.3 3 1

initvar bothbad 103 9 3 3212.5 212.4 5 2

initvar good 103 9 3 3212.5 212.4 6 2

initvar onebad 103 9 3 2866.8 208.5 6 2

order inorder 137 14 4 8372.3 303.1 6 1

order shuffled 137 14 4 8372.3 303.1 6 1

overload multmixed 78 11 1 2340.0 120.0 9 3

overload plusmixed 78 11 1 3428.3 117.2 7 3

overload strings 98 11 1 3428.3 117.2 21 3

partition balanced 105 5 4 2896.0 188.9 26 4

partition unbalanced 102 5 4 2382.3 177.2 19 3

partition unbalanced pivot 120 6 4 2707.8 196.2 19 3

rectangle basic 293 18 2 18801.2 396.3 7 2

rectangle class 421 21 5 43203.7 620.1 7 2

rectangle tuples 277 14 2 15627.7 403.8 7 2

scope diffname 144 12 3 2779.7 188.0 2 1

scope samename 156 12 3 2413.3 183.6 2 1

whitespace linedup 275 14 1 6480.0 216.0 13 3

whitespace zigzag 259 14 1 6480.0 216.0 13 3

Table 4: Metrics for all 25 Python programs (10 bases, 2-3 versions). From left to right: code characters, code lines, Cyclomatic
Complexity, Halstead Effort, Halstead Volume, output characters, output lines.

48

References

[1] Jean-Marie Burkhardt, Françoise Détienne, and Susan Wiedenbeck. Object-oriented program
comprehension: Effect of expertise, task and phase. Empirical Software Engineering, 7(2):115–156, 2002.

[2] Simon Cant, David Jeffery, and Brian Henderson-Sellers. A conceptual model of cognitive complexity
of elements of the programming process. Information and Software Technology, 37(7):351–362, 1995.

[3] Reginald B. Charney. PyMetrics. http://pymetrics.sourceforge.net/, Jan 2013.

[4] William G. Chase and Herbert A. Simon. Perception in chess. Cognitive Psychology, 4(1):55 – 81, 1973.

[5] Adrian de Groot, Fernand Gobet, and Riekent Jongman. Perception and memory in chess: Studies in the
heuristics of the professional eye. Van Gorcum & Co, Assen, Netherlands, 1996.

[6] Françoise Détienne. Cognitive ergonomics. chapter Program Understanding and Knowledge
Organization: The Influence of Acquired Schemata, pages 245–256. Academic Press Professional, Inc.,
San Diego, CA, USA, 1990.

[7] Françoise Détienne and Frank Bott. Software design–cognitive aspects. Springer Verlag, 2002.

[8] Christopher Douce. The stores model of code cognition. In Psychology of Programming Interest Group,
2008.

[9] Christopher Douce, Paul J. Layzell, and Jim Buckley. Spatial measures of software complexity. 1999.

[10] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression. The Annals
of statistics, 32(2):407–499, 2004.

[11] Khaled El-Emam. Object-oriented metrics: A review of theory and practice. national research council
canada. Institute for Information Technology, 2001.

[12] Khaled El-Emam, Saida Benlarbi, and Nishith Goel. The confounding effect of class size on the validity
ofobject-oriented metrics. Software Engineering, IEEE Transactions on, 27:630–650, 1999.

[13] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):861–874, 2006.

[14] Norman E. Fenton and Martin Neil. A critique of software defect prediction models. Software
Engineering, IEEE Transactions on, 25(5):675–689, 1999.

[15] Norman E. Fenton and Martin Neil. Software metrics: roadmap. Proceedings of the Conference on The
Future of Software Engineering, pages 357–370, 05 2000.

[16] Robert L. Goldstone, David H. Landy, and Ji Y. Son. The education of perception. Topics in Cognitive
Science, 2(2):265–284, 2010.

[17] Mark Guzdial. From science to engineering. Commun. ACM, 54(2):37–39, February 2011.

[18] Maurice H. Halstead. Elements of Software Science (Operating and programming systems series). Elsevier
Science Inc., 1977.

49

http://pymetrics.sourceforge.net/

[19] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Reading beside the lines: Indentation as a
proxy for complexity metric. In Program Comprehension, 2008. ICPC 2008. The 16th IEEE International
Conference on, pages 133–142. IEEE, 2008.

[20] Tuomas Klemola. A cognitive model for complexity metrics. In 4th International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering, 2000.

[21] Thomas J. McCabe. A complexity measure. Software Engineering, IEEE Transactions on, (4):308–320, 1976.

[22] NDepend. NDepend Code Metrics Definitions. http://www.ndepend.com/metrics.aspx, Jan 2013.

[23] Fabian Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[24] Alex Poole and Linden J. Ball. Eye tracking in HCI and usability research. Encyclopedia of
Human-Computer Interaction, C. Ghaoui (ed.), 2006.

[25] Robert S. Rist. Schema creation in programming. Cognitive Science, 13(3):389–414, 1989.

[26] Jorma Sajaniemi and Raquel Navarro Prieto. Roles of variables in experts programming knowledge. In
Proceedings of the 17th Annual Workshop of the Psychology of Programming Interest Group (PPIG 2005), pages
145–159. Citeseer, 2005.

[27] David Sankoff and Joseph B. Kruskal. Time warps, string edits, and macromolecules: the theory and
practice of sequence comparison. Reading: Addison-Wesley Publication, 1983, edited by Sankoff, David;
Kruskal, Joseph B., 1, 1983.

[28] Roger C. Schank and Robert P. Abelson. Goals and understanding. Erlbanum: Eksevier Science, 1977.

[29] Sidney Siegel and N. John Castellan. Nonparametric statistics for the behavioral sciences. McGraw–Hill,
Inc., second edition, 1988.

[30] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE Transactions on
Software Engineering, (5):595–609, 1984.

[31] Todd L. Veldhuizen. Parsimony principles for software components and metalanguages. Proceedings of
the 6th international conference on Generative programming and component engineering, pages 115–122, 10
2007.

[32] Hans W. Wendt. Dealing with a common problem in social science: A simplified rank-biserial
coefficient of correlation based on the u statistic. European Journal of Social Psychology, 2(4):463–465, 1972.

50

http://www.ndepend.com/metrics.aspx

	Introduction
	Background and Related Work
	Code Complexity Metrics

	Methodology
	Mechanical Turk
	Python Programs
	Complexity Metrics

	Performance Metrics
	Statistics

	Results
	By Performance Metric
	Output Distance
	Trial Duration
	Keystroke Coefficient
	Response Proportion
	Response Corrections
	Complexity Metrics and Demographics

	By Program Version
	between
	counting
	funcall
	initvar
	order
	overload
	partition
	rectangle
	scope
	whitespace

	By Experience and Correctness
	Correct/Incorrect Trials
	Expert/Non-Expert Trials

	Discussion
	Expectation Violations
	Physical Notation
	Predicting Performance

	Conclusion
	Future Work

	Acknowledgements
	Appendix - Programs
	between
	between - functions
	between - inline

	counting
	counting - nospace
	counting - twospaces

	funcall
	funcall - nospace
	funcall - space
	funcall - vars

	initvar
	initvar - bothbad
	initvar - good
	initvar - onebad

	order
	order - inorder
	order - shuffled

	overload
	overload - multmixed
	overload - plusmixed
	overload - strings

	partition
	partition - balanced
	partition - unbalanced
	partition - unbalanced_pivot

	rectangle
	rectangle - basic
	rectangle - class
	rectangle - tuples

	scope
	scope - diffname
	scope - samename

	whitespace
	whitespace - linedup
	whitespace - zigzag

	Appendix - Program Metrics
	References

